
1 Basics - in 1D

1.1 Time dependent Sch. equation and operators

In the heart of classical mechanics in 1D we have Newton F = ma. For
conservative forces F = m ∂2x

∂2t2
= −∂V

∂x
. we can get x(t) if we know the

potential and some boundary conditions. All other dynamical quantities
follow eg v(t) = dx/dt, p = mv, KE= mv2/2 = p2/2m etc

In quantum mechanics we also need the potential but we look for the wave
function Ψ(x, t) as wave particle duality means that particles are ’wavy’.
We can’t know position and momentum simultaneously ∆x∆p ≥ h̄/2. We
can’t get velocity, etc from dx/dt as there is no well defined x(t). Waves
in free space have Ψ = Nei(kx−ωt) (left to right), and p = h̄k. ∂Ψ/∂x =
Nikei(kx−ωt) = ikΨ. This gets us to operators p̂Ψ = h̄

i
∂Ψ/∂x i.e. p̂ =

−ih̄∂Ψ/∂x. Then we can get KE=p2/2m = −h̄2/2m∂2/∂x2. Total energy
(Hamiltonian) Ĥ = KE + PE = p2/2m + V . But for waves we also know
that total energy E = h̄ω. ∂Ψ/∂t = −iωΨ hence E = h̄/(−i)∂/∂t =
ih̄∂/∂t Hence we get Schroedingers equation in 1D which we solve for Ψ
from boundary conditions

EΨ = ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ VΨ = ĤΨ where Ĥ = − h̄2

2m

∂2

∂x2
+ V (1)

Ψ(x, t) now has a probablilisic interpretation - probability of finding par-
ticle between a and b at time t is

∫ b
a |Ψ(x, t)|2dx. Thus it has to normalise to

unity over all space
∫+∞

−∞
|Ψ(x, t)|2dx = 1. |Ψ(x, t)|2 is the probability density.

1.2 Observables

We now get all other dynamical quantities, A, by writing it in operator form
Â - replace any quantity involving p by p̂. Then the expectation value from
any measurement is < A >=

∫

Ψ∗ÂΨdx. < x >=
∫

Ψ∗xΨdx, < p >=
∫

Ψ∗.(−ih̄∂Ψ/∂x)dx...
Anything we can observe HAS to be real ie< A >=< A >∗ so

∫

Ψ∗(ÂΨ)dx =
∫

ΨÂ∗Ψ∗dx =
∫

(ÂΨ)∗Ψdx Any operator which has this property is termed
Hermitian. Only Hermitian operators can represent observables. The Hamil-
tonian is forced to be Hermitian by virtue of conservation of probability! so
energy is always a real observable.
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1.3 Time independent Schroedinger equation

We can split the time dependent sch equation up into a time and spatial
part IF the potential is NOT time dependent. So for V (x, t) = V (x) we get
Ψ(x, t) = ψ(x)T (t) where T (t) = e−iEt/h̄ and ψ(x) satisfies

Eψ = − h̄2

2m

∂2ψ

∂x2
+ V ψ (2)

So we solve this EIGENVALUE equation (operator acting on a function
returns a function multiplied by a number) to get ψ(x).

If the particle is bound then its a standing wave. There are only so many
ways to fit this into the potential so the solutions are quantised. This gives a
series of possible solutions (eigenfunctions) ψn(x) all of which satisfy the time
independent Schroedinger equation, each with their own quantised eigenen-
ergy En. We normalise each one so that

∫

ψn(x)∗ψn(x)dx = 1 and then these
form an orthonormal basis so

∫

ψn(x)∗ψm(x)dx = δnm i.e. 1 when n = m (as
we normalised it to itself) and 0 otherwise.

Any arbitrary sum of eigenfunctions also is a solution of the Schroedinger
equation so the general solution is ψ(x) =

∑

nAnψn(x). This itself has to
be normalised so

∫

ψ(x)∗ψ(x)dx = 1 which means that
∑

nA
2
n = 1 When we

measure the system we force it to pick ONE of the possible eigenfunctions,
ψn(x). The probability that it picks ψn is A2

n for a normalised wavefunction.
So there is probability A2

n to measure energy En. This is not the same as the
expectation value < E >=

∑

nA
2
nEn

we saw examples of these eigenfunctions - infinite square well potential
(0 < x < L: ψn(x) ∝ sinnπx/L n = 1, 2 . . .), harmonic potential 1

2
κx2

ψn(x) ∝ e−α2x2/2Hn(αx), n = 0, 1, 2 . . . where Hn are Hermite polynomials
and n = 0 means there is a zero point energy).

The full time dependent solution is Ψ(x, t) =
∑

nAnψn(x)e−iEnt/h̄.

1.4 Commutators

We can only observe quantities simultaneously to arbitrary accuracy if they
commute ie the commutator [Â, B̂] = ÂB̂ − B̂Â = 0 eg [x, px]ψ = x(pxψ) −
px(xψ) = ih̄! The measurement of x disturbs the wavefunction for the mea-
surement of p. Alternatively, measuring p disturbs the wavefunction for
measuring x. [Â, B̂] = 0 means that Â, B̂ share common eigenfunctions f , so
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Af = af , and Bf = bf and measuring one does not disturb the wavefunction
for the other.

2 Schroedinger in 3D

ih̄
∂Ψ

∂dt
= − h̄2

2m
∇2Ψ + VΨ = EΨ

Normalisation is now over the entire volume so that
∫

ψ∗ψdV = 1

2.1 Cartesians

∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. If the potential is separable so V (x, y, z) =
Vx(x)Vy(y)Vz(z) then we just have 3 time independent Schroedinger equa-
tions to solve for the 3 coordinates, for ψnx,ny,nz(x, y, z) = ψnx(x)ψny(y)ψnz(z)
where each direction has its own quantum number eg infinite square well po-
tential, and 3D harmonic potential. Volume integral is

∫ ∫ ∫

ψ∗ψdxdydz.
In 2D or 3D there is much more room. and any symmetry comes at a price

of introducing a degeneracy - same energy but different wavefunction!

2.2 Spherical polars

∇2 has much more difficult form. But the electrostatic potential V (x, y, z) =
−Ze/4πǫ0

√
x2 + y2 + z2 is not separable in cartesian coordinates but is in

spherical polars V (r) = −Ze/4πǫ0r. For ANY spherically symmetric radial
potential where V (x, y, z) = V (r) then the Schroedinger equation separates
into 3 separate equations, one for each of the r, θ, φ coordinates, with the
potential ONLY appearing in the r equation, not in the θ, φ equations due to
spherical symmetry. so the wavefunction is ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) where
Θ(θ)Φ(φ) are the same for any potential and are the eigenequations of the
angular momentum operators. Volume integral is

∫ ∫ ∫

ψ∗ψr2 sin θdrdθdφ.

2.3 Angular momentum

In 3D we can have angular momentum L = r × p This looks bad initially -
trying to constrain momentum and position. but do it in cartesian coordi-
nates and it becomes clear that Lx = (ypz − zpy) = −ih̄(y∂/∂z− z∂/∂y). so
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its position along one axis, and momentum along another so OK (Hermitian).
Its when we try to constrain combinations of these we run into trouble.

LxLy = (ypz − zpy)(zpx − xpz) = ypzzpx − ypzxpz − zpyzpx + zpyxpz

These won’t commute - 1st and 4th term have pz and z. so we cannot
simultaneously measure all the components of L.

But we can know L2 = L2
x + L2

y + L2
z together with ONE of the angular

momentum components as [L2, Lx] = [L2, Ly] = [L2, Lz] = 0. we choose L2

and Lz as Lz = −ih̄∂/∂φ has a simpler form than Lx, Ly.

2.4 Eigenfunctions of L2 and Lz

The eigenequation is LzΦm = mh̄Φm where the eigenvalue has been split
into mh̄ for convienience. so −ih̄∂Φm/∂φ = mh̄Φm so ∂Φm/∂φ = imΦm or
Φm = (2π)−1/2eimφ (normalised). Satisfied for any value ofm (not necessarily
integer). But in order to be single valued need Φm(0) = Φm(2π) so m =
0,±1,±2 . . .. So Eigenvalues of Lz are 0,±h̄,±2h̄ . . ..
L2 and Lz share a common set of eigenfunctions. call them Ylm(θφ) =

Θlm(θ)Φm(φ) It has to be separable as LzYlm(θφ) = mh̄Θlm(θ)Φm(φ) =
mh̄Ylm(θφ). But these are also eigenfunctions of L2 so our next eigenequa-
tion is L2Ylm(θφ) = l(l+ 1)h̄2Ylm(θφ) where again the h̄2 is for convienience.
Fight through a lot of algebra and the solutions are Legendre polynomials
of order l for m = 0 and associated Legendre polymonials for m 6= 0. As-
sociated legendre polynomials are given by the mth derivative so the l + 1
derivitive will vanish so a given l we can have m = −l,−l + 1, . . . 0, 1, 2 . . . l.
Normalise so

∫ ∫

Ylm(θφ) sin θdθdφ = 1

2.5 Radial eigenfunctions

[H,L2] = 0 and [H,Lz] = 0. So these all share a common set of eigen-
functions and we can measure energy, total angular momentum and angular
momentum about one axis simultaneously as the wavefunction is separable
ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ). so eigenfunctions of L2 and Lz are also eigen-
functions of H for a central potential. so all we need to get now are Rnl(r)
with corresponding En = −13.6/n2 eV where n = 1, 2, . . .. These are la-
guerre polynomials for l = 0 and assocaiated laguerre polynomials for l 6= 0
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where again the associated laguerre polynomials are derivatives so only exist
for l = 0, 1, 2 . . . n − 1. And so we get the wavefunctions and spectrum of
hydrogen. If the system is in state ψnlm then we can calculate any observable
such as < r >=

∫ ∫ ∫

ψ∗

nlmrψnlmr
2 sin θdrdθdφ.

2.6 Spin

The En from ψnlm above explain *most* of what we see in hydrogen. But
not all. Fermions also have spin angular momentum, S. This is an angular
momentum so we can measure S2 and Sz together. Szψ = msh̄ψ while
S2ψ = s(s + 1)h̄2ψ and ms = −s . . . s. s = 1

2
for fermions so ms can take

values ±1
2

if we have electron spin, we have a small additional potential that comes
from the associated magnetic moment interacting with the electronstartic
field of the nucleus. This is very difficult to solve exactly but its only a small
perturbation to the exact solutions for the 1/r potential. so we use...

3 Perturbation theory

3.1 nondegenerate

Before we had H0ψ0
n = E0

nψ
0
n. Now we have H = H0 + λH ′. Now we have

corrections to the energy E ≈ E0
n + λE1

n + λ2E2
n and to the wavefunction

ψn ≈ ψ0
n + λψ1

n + λ2ψ2
n. Hψn = Enψn so

(H0+λH ′)(ψ0+λψ
1
n+λ2ψ2

n+. . .) = (E0
n+λE1

n+λ2E2
n+. . .)(ψ0+λψ

1
n+λ2ψ2

n+. . .)

zeroth order (no λ) H0ψ0
n = E0

nψ
0
n (as before) but 1st order tells us something

new: H0ψ1
n +H ′ψ0

n = E0
nψ

1
n + E1

nψ
0
n. multiply by (ψ0

n)∗ and integrate to get
E1

n =
∫

(ψ0
n)∗H ′ψ0

ndx These are often amazingly accurate!
1st order correction to the wavefunction is a lot less impressively accurate

ψ1
n =

∑

l clψ
0
l for l 6= n where cl = − 1

E0

l
−E0

n

∫

ψ0∗
l H

′ψ0
ndx. We CAN’T use this

if the energy levels are degenerate - though we can often get away with it by
if the perturbation which commutes with all the other operators (see below)

2nd order correction to the energy is E2
n =

∫

ψ0∗
n H

′ψ1
ndx.
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3.2 Degenerate perturbation theory

A perturbation to the potential, H ′, breaks the symmetry so also has the
potential to break some of the degeneracies. A n-fold degeneracy means
there are n states, ψ0

a, ψ
0
b . . . which give the same energy E0. Say we have 2.

Any linear combination ψ0 = αψ0
a + βψ0

b also gives the same energy E0 (eg
spin)

typically the perturbation H ′ breaks the degeneracy, so that E0 splits into
two, with the difference in energy increasing as λ goes from 0 → 1. when
we turn off the pertubation, the upper states goes back to a unique α, β
while the lower states goes back to another unique α, β. we find these ’good’
unperturbed states from the matrix equation

(

Waa Wab

Wba Wbb

)(

α
β

)

= E1

(

α
β

)

where Wij =
∫

ψ0∗
i H

′ψ0
j dx and i, j is one of a, b. solve by subtracting, and

then inverting the matrix.
If we happen to choose the ’good’ basis wavefunctions from the start then

we CAN use non-degenerate perturbation theory - which is a lot easier. so
thats why we use total angular momentum in hydrogen J = L+ S This can
takes values |l−s| < j < l+ s in integer steps. J2 has eigenvalues j(j+1)h̄2,
and the corresponding −j < mj < j in integer steps, while Jz has eigenvalues
mjh̄. so we use quantum numbers n, l, j,mj and then our wavefunctions are
the ’good’ wavefunctions and we can use non-degenerate perturbation theory
for our perturbation H1

so ∝ S.L (spin orbit coupling).
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