Data Reduction - Optical / NIR Imaging

Mark Swinbank & Julie Wardlow OCW113 & OCW111

Images at different wavelengths...

Images at different wavelengths...

However, the raw data are always not as pretty

Why?

"The total amount of energy from outside the solar system ever received by all the radio telescopes on the planet Earth is less than the energy of a single snowflake striking the ground"

-Carl Sagan

- Raw images are dominated by sky background and instrumental noises/ effects
- Objects of interest are usually faint and require many exposures to detect
- Need to reduce and combine raw data into one final science image

Goal: Learn how to in principle do

Why do we learn how to reduce data when there are usually pipelines available?

Pipelines may not work properly.....

Are data in different wavelengths all reduced in the same way?

No, but the concepts are similar....

Instrumental noises / effects :

Bias:

An offset to keep the signals positive.

Instrumental noises / effects :

Dark:

Thermal signals from the detector, highly temperature dependent, non-negligible in NIR.

Instrumental noises / effects :

Flat-field:

Non-uniformity of the quantum efficiency across the whole detector.

Ways to measure them :

Bias:

Obtain by reading-out the CCD with a zero-second exposure.

Dark:

Exposures taken with the shutter closed (dark!), with the same exposure time and temperature as the science images.

Flat-field:

Exposures of a uniformly illuminated source. Type of flatfields: Dome, Twilight, Sky

NOTE: Often will have several exposures for each effect, and they can be averaged together to make a more robust master

Raw

Fundamental Steps:

- 1. Subtract bias / dark
- 2. Flat-fielding
- 3. Co-add all "reduced" frames into one final image
- 4. Calibrate astrometry and flux using references such as standard stars, and update FITS header.

Calibrations

Astrometry:

The coordinates of the original images might not be accurate. Need to correct for this effect using bright referencing objects.

Calibrations

Flux:

The digital values of the reduced images are usually arbitrary. Need to convert those values to physically meaningful values, again using bright referencing objects with known fluxes and that are observed by the same instrument.

Other issues

Cosmic rays:

Comic rays often appear on images taken by the space telescopes. Need to be removed.

Your toolkit

1. Fundamentally, we're dealing with arithmetic operations on 2D arrays. Use your favorite computer language (IDL, Python, C, IRAF, etc) to manipulate them. Choice is yours.

Some invaluable tools: SExtractor (object extraction and photometry), SWarp (image co-add and re-sampling), WCSTools (manipulate/fit astrometry)

Your toolkit

3. Viewing Tools: ds9, Gaia (for example, ds9 can load many images on different pixel scale and align them).

Things that will help you

1. Naming convention : often a good idea to re-name the cryptically named raw files to something useful describing what the frame is (e.g., r102914.fits becomes object_K_10s.fits).

Image: Second secon	000		CANDELS	
FAVORITES ancillary CANDELS Propositions Applications Cach Applications Cach radio radio ShareD a-dellas b001-labco cqo-pc dgfrwy2j				Q
🕎 drt-pc	FAVORITES Complexies Propbox AirDrop AirDrop Applications Cochen Desktop Documents Downloads Downloads Macintosh HD SHARED a-dellas b001-labco cqo-pc dgfrwy2j dfrwy2j dfrwy2j dfrwy2j	 ancillary JGeach projects 	CANDELS <pre> drawcoverage.py Herschel k radio Spitzer </pre>	 hlsp_candels_hst_wfc3_uds-tot_f160w_v1.0_drz.fits UDS.WFC3.F160W.fits UDS.WFC3+ACS.all.fits

Things that will help you

2. Flexible Image Transfer System (FITS) file format : Consists of 'header' containing meta-data (most important being world-coordinate system: WCS) and a binary array containing image data. FITS can also support multiple extensions (beware the hidden extension) and some catalogues come in FITS table format.

Hint: Information for sensible re-naming can be found in the header

FITS Header

	000	V ryci0220 3 K fits	
	File Edit F	iont	
	CSEC12 = DSEC12 = TSEC12 = ASEC21 =	'[1025:2048,1:1024]' / ccd section '[1025:2048,1:1024]' / data section '[1025:2048,1:1024]' / trim section '[1:1024,1025:2048]' / amplifier section	
0	BSEC21 =	/ Dias section	
VCS Analysis Help	DSEC21 = TSEC21 =	'[1:1024,1025:2048]' / data section '[1:1024,1025:2048]' / trim section	
	ASEC22 = BSEC22 =	'[1025:2048,1025:2048]'/ amplifier section / bias section	
E	CSEC22 = DSEC22 =	'[1025:2048,1025:2048]'/ ccd section '[1025:2048,1025:2048]'/ data section	
Ń	TSEC22 = IDETTEMP=	'[1025:2048,1025:2048]'/ trim section 75.82 / Initial detector temperature	
cale color region	DATE-0BS=	'2007-02-10T00:00:00.000'/ Date of observation '00:48:45.0' / UT of TCS coordinates	
ge setup print	RA =	'02:20:54.92' / right ascension (telescope)	
	DEC =	'-38:28:07.3' / declination (telescope)	
and the second second	EQUINOX =	2000.0 / epoch of RA & DEC	
	HA =	'03:03:13.6' / hour angle (H:M:S)	
	CRPIX1 =	1292.28125 / Reference pixel on axis 1	
	CRP1X2 =	1333.415093 / Reference pixel on axis 2	
and a second second	CRVALI =	35.2366666666667 / Value at ref. pixel on axis 1	
	CTYPE1 -	'PA TAN' / Type of co ordinate on axis 1	
	CTYPE2 -	'DEC. TAN' / Type of co-ordinate on axis 1	
		-9 46940149799206E-57 Pixel size on axis 1	
	CDELT2 =	-8 47328196270999E-5/ Pixel size on axis 2	
	PC1 1 =	1.0 / Transformation matrix element	
	PC1 2 =	-3.34986750110235E-4/ Transformation matrix element	
	PC2 1 =	0.000449691780622417 / Transformation matrix element	
	$PC2^2 =$	1.0 / Transformation matrix element	
	MJD-OBS =	54141.0 / Modified Julian Date of observation	
	RADESYS =	'FK5 ' / Reference frame for RA/DEC values	
	ST =	'05:24:26.4' / siderial time	
	DOMEAZ =	'120.2 ' / dome azimuth	
	AIRMASS =	'1.274 ' / airmass	
	ZD =	'38.3 ' / zenith distance (degrees)	
	TELF0CUS=	'183753 ' / Telescope focus	
	FILTNUM =	'4 ' / Filter number	
	FILTNAME =	'KA ' / Filter name	
	CRMASK =	'crmask_RXCJ0220_067_flat.pl'	
0.35 0.7 1.1	COMMENT =	'dimsum.registar: Tue 17:52:49 06-Nov-2007'	
	COMMENT =	'dimsum.registar: Header data copied from file RXCJ0220_067_flat.fits	

1

File Edit View Frame Bin Zoom Scale Color Region WCS File rxcj0220.3_K.fits Object Register mosaic sum: RXCJ0220 Value WCS Physical Y Image Frame 1 0.250 0.000 ٠ х file edit view frame bin zoom scale header open save page set

X SAOImage ds9

000

-1.4

-1

-0.69

-0.35

0.0044

3

What's next:

- Hands-on workshop next Monday at R216 (1-5pm)
- Step-by-step instructions can be found on the website: http://www.astro.dur.ac.uk/~cpnc25/pg_dr_imaging.html
- chian-chou_chen@durham.ac.uk / Ph319

Two main datasets:

1. Optical Imaging Data: GMOS B-band imaging of cluster RXJC0220.9-3839 (@0220/optical/)

2. Near-IR imaging Data: a gravitationally lensed galaxy in Cl2243 with NIRC on Keck (@NIR/)

Ancillary datasets:

3. Pre-reduced NIR Imaging Data: J/K-band imaging of cluster RXJC0220.9-3839 (@0220/NIR)

Task I: Reduce raw data

Task 2: Co-add reduced frames

Co-adding makes deeper images

Co-adding makes deeper images

Step 1: Open Co-add image in Gaia, adjust to your favorite colors and scales

i Select a quick colour map (more in View...Colors)

Step 2: Go to Data-Servers, Catalogs, bright object catalog USNO at ESO, search

O Starlink GAIA::Skycat: mosaic.fits (1)	● ○ ○ X USNO at ESO (1)
Elle View Graphics Go Image-Analysis Data-Servers Interop Help	Eile Edit Options Data-Servers Help
Object 80030220.9-3829 (f Catalogs P 2MASS Catalog at CDS X: 1619.0 Image Servers 2MASS at CADC a: 2:21:02.294 Local Catalogs ACS at CADC Good Catalogs ACS at CADC Image Servers	Search Options Object Name: Equinox: 32000
Min: 553.644714355469 Browse Catalog Directories Control-b Guide Star Catalog at CADC Low: 596.145 Guery a VO catalog server Guide Star Catalog at CADC Scale: 1x Z Guery list of VO image servers Guide Star Catalog at CADC	a: 02:20:58.502 d: -38:33:13.36 Min Radius: 0.0 Max Radius: 4.9431 Exintent (min): Exintent (max):
Reload config file Control-R History Control-h NED at CADC NED at ESO NOMAD-1 Catalogue	Max Objects: 20000 Select Area Set From Image
PPM at ESO GSO at CADC	Provided by courtesy of the US Naval Observatory
GSO96 at CADC GSO98 at CADC RC3 at CADC ROSAT All-Sky Bright Source Catalogue SAO at CADC SIMBAD through CADC SIMBAD through CADC SIMBAD the ESO Tycho-2 at CADC UCAC2 Catalog at CDS UCAC2 Catalog at CDS UCAC3 Catalog at CDS USNO at CADC USNO at CADC USNO at CADC USNO at CADC	Search Results (123) ID ra dec r_mag b_mag field d' U0450.00813199 02:21:20.820 -38:32:30.65 14.1 14.8 298 4.421 U0450.00810590 02:20:56.026 -38:35:22.22 14.3 14.5 298 2.202 U0450.00810590 02:20:56.026 -38:35:22.22 14.3 14.5 298 2.202 U0450.00810500 02:20:153.357 -38:30:56.83 14.9 15.3 298 2.868 U0450.00810351 02:20:53.807 -38:30:13.10 15.4 16.8 298 3.142 U0450.00810654 02:20:53.807 -38:34:10.41 15.8 17.4 298 2.566 U0450.00810250 02:20:52.7 0 0 VISNO at ESO (1) VISNO at ESO (1) U0450.00809574 02:20:46.5 20:46.5 20:45.50.502 d -38:33:13.36 Win Radius: 0.0 Max Radius: 4.9431 Eightest (min): Faintest (max): 4 0450.0081261
	Search Results
I Find VO cone search servers and query for catalogs	Search Plot Filter More into Preview Stop Close

Step 2: Once click search, sources should appear, can see mismatched positions

Workshop

Task 3: Calibrate Astrometry

X GAIA: Fit astrometry reference positions (1)

Step 3: Image-Analysis -> Astrometry calibration -> Fit to star positions -> Select the USNO at ESO catalog

				X Star	link GAIA::Skycat: mosaic.fit	s (1)		Eile	Edit C	ptions <u>M</u> arke	ers		Help
/iew	Graphics	Go	Image-Analysis	Data-Servers	Interop			id ra	dec x y	Refe	rence positions		
	0	bject: R	Aperture photometry	y P	ts)								
Epsilor	8 .	X: 2	Image regions	Control-r	: 3123.0	Value:							
1		α:	STC-S regions			Equinox:		Nev	v Ed	t Delete	Grab	Centroid	Clip
		Min: 5	Patch image Blink images	Control-u Control-b	5274.67626953125	Aut	o Cut:	G	Z 1	Reset	Set	Clear	Redraw
		Low: 5	Overlay axes grid	Control-t	: 736.331	Color	мар:	Move m	arkers indivi	iually: 💌	Transfer		
		Scale:	Change coordinate	s P	Automatic position matching	Control h	Scale:	- Par	ameters for ta	ble coordinates:			
			Object detection	Control-i	Fit to star positions	Control-K		Coordin	ate type:	Equator	ial (RA/Dec)	-	
	1725000	SCOOL.	Contouring	Control-h	Copu from another image	Control-z		Coordin	ate system:		PK5	-	
			Surface photometry		Tune in known calibration	Control-w		Equinox	:	J2000		_	
			Positions		Type in known campranon	Composition		Epoch:				_	
			Mean X & Y profile	s Control-e				000	X	Select a d	catalogu	e	
		1	Polarimetry toolbox					Select a c	atalogu				-
		6	Mask image		•	S		JSNO at 1	ESO	catalog	(mosaic	.fits)	
	1		Demonstration mod	e									
				-									
		0											$\overline{\nabla}$
			/	1				\triangleleft					\geq
			All and			Crail C		Selection					
~									ок		Ca	ancel	
	173800		The State of the	X		-) •				10 M			

Step 4: Adjust the marker size and width

Step 5: Clip objects outside the frame, extended objects, saturated stars

00					X Starl	ink GAIA::Skycat: mos	aic.fits (1)										
Eile	⊻iew	Graphics	<u>G</u> 0	Image-Analysis	Data-Servers	Interog				He	elp						
		0	Object	RXCJ0220.9-3829	(file:mosaic.fit	:s)					0	X GAI	A: Fit astron	metry referen	ce positions (1)	
100	E.	a .	X:	2883.0	Y	3079.0	Value:			Eile	Edit	Option	ns <u>M</u> ark	ers			Help
			0:		ð		Equinax						Refe	erence positions	;		
N	*		Min:	553.644714355469	Max	5274.67626953125	Auto Cut:	-		id		ra		dec	x		y 🛆
-		3	Low:	596.145	High	736.331	Color Map:	-		U0450.0 U0450.0	0810767 0810863	7 02:20 3 02:20):57.685 ·):58.547 ·	-38:33:03.05 -38:31:40.93	1551.988368 989.9796953	8005002 2476532	1154 <u>1223</u>
			Scale:	1/2x - Z	ZGZN	Ī	Color Scale:	-		U0450.0	0811260	0 02:21	:01.927	-38:36:21.13	2907.497200	4988199	1496
	554.2	and the second second	CONC						<u>≥ 200m</u>	U0450.0	0811055	02:20):59.975	-38:31:18.38	835.6350397	6672098	1338
	~						And Contained in the										$\square \bowtie$
	(\mathbf{h})					1.1.1		\bigcirc		New	/	Edit	Delete	Grab	Centroid	1	Clip
X	×							(+)		G	₽	t-t	Reset	Set	Clear	Redr	raw
						. (-		\sim						Transfer			
				1	20		·	(+))	Move m	arkare ir	lleuhivih					
	1.				1. 1. 1.	-		$\cap \cup$	(Deve		for toble a	y. 💌				
				State Ste		()				- Para	ameters	for table (coordinates:	-			
		0	•	C	Sec. State	· · · · · · · · · · · · · · · · · · ·				Coordina	ate type:		Equato	rial (RA/Dec))		
	•					- (-	b)			Coordina	ate syste	em:		FK5	-		
		.~~								Equinox			J2000				
					1					Epoch:					_		
		•						U U	フ	— Imaç	je paran	neters: —					
				2. 1. 1. 6		\square	. 14			Projectio	in type:		G	nomic (tange	nt plane) (-1	TAN)	-
					\cup		•			projp1:					_		
	- (-)								proip2:					-		
1	2						A CARLES)	X coordi	inate tvp	ie:	RA	/Longitude			
- (-				and the second	142 1 1 1							1					
۰.		0	2.		1.					F	n/Test		Reset	Ca	ncel	Accep	
er.		()		1. 1. 1999	-	and the later is											
		1-	-) ·	0	(••)												
)			2								un the est	ented rours	from the table				
		AX	X	and the second second						LT Nello	V6 LT18 381	ecteu rows	THORN THE LADIE				

Step 6: move markers to the right positions of the bright objects Hint: unclick Move markers individually to move all markers

Workshop

Task 3: Calibrate Astrometry

Step 7: Click Centroid, and Fit/Test, re-center and re-clip till the rms good

😑 😑 💿 🛛 🕅 🕅	AIA: Fit astromet	ry reference	positions (1)	
<u>E</u> ile <u>E</u> dit <u>O</u> p	tions <u>M</u> arkers			<u>H</u> elp
	Referen	ce positions		
id ra	dec	25 00 00 0	c y	A
00450.00810590 02: π0450.00809546 02:	20:55.025 -38	35:22.22 2	2509.11 1020	. 52
U0450.00810295 02:	20:53.259 -38	:34:44.57 2	2251.18 800.	964
U0450.00809574 02:	20:46.527 -38	:33:31.43 1	1749.73 265.1	163
00450.00809983 02:	20:50.495 -38	:34:33.88 2	2177.25 579.	81
			0	
New Edit	Delete	Grab	Centroid	Clip
S Z N	Reset	Set	Clear	Redraw
	Tr	ansfer		
Move markers individu	ially: 🔽			
- Parameters for tabl	le coordinates:			
Coordinate type:	Equatoria	l (RA/Dec)	-	
Coordinate system:	F	K5	-	
Equinox:	J2000		-	
Epoch:			-	
- Image parameters:				
Projection type:	Gnom	ic (tangent	plane) (-TAN) -
projp1:				
projp2:				
X coordinate type:	RA/Lor	ngitude	-	
Fit/Test	Reset	Canc	el	Accept
Rms of fit = 0.319 x,y scales = 0.146 orientation = -268	886737438299 (a 524572861284, O .796383 (degree	rcsec), 2.1 .1461195890 s)	8618225872857 4344 (arcsec/	(pixels) (pixel)
i				1

Hint: an rms of < 0.4" is acceptable in this data

Workshop

Task 3: Calibrate Astrometry

Step 8: when the fit is good, click Accept and save the image

Task 4: Flux calibration

Step 1: Image Analysis -> Aperture Photometry -> Results in data counts

Hint: Goal is to find the zero point (magnitude = Zpt - 2.5*log(flux))

Task 4: Flux calibration

O V CAIA: Anarture photometry

Close

Step 2:Define an aperture by dragging the cursor -> Calculate results Hint: Use the B-band magnitude from the catalog as the reference

Help uinox: J2000 d: -38:33:11.00 adius: 2.7			<u>E</u> ile Results: Aperture — Curren Aperture in	Options <u>C</u> olours GaiaPhotonLog.Da Parameters Res t object details	it Choo: iults
Help uinox: J2000 d: -38:33:11.00 adius: 2.7			Results: Aperture — Curren Aperture in	GaiaPhotonLog.Da Parameters Res t object details	it Choo
uinox: J2000 d: -38:33:11.00 adius: 2.7			Aperture — Curren Aperture in	Parameters Res	sults
uinox: J2000 d: -38:33:11.00 adius: 2.7			Aperture — Curren Aperture in	Parameters Res	suits
d: -38:33:11.00 adius: 2.7			— Curren Aperture in	t object details	
adius: 2.7			Aperture in	deux d	
adius: 2.7				Idex: II	
(max):			X position:	1436.3	1
	and the second second		Y position:	1539.1	7
			Mean cour	nt: 361.95	
rea Set From Image			Error in co	unt: 0.1633	5
	. The second		Sky value:	613.44	
		1.	Sum in ape	erture: 0.2952	8E+06
		🙀	Error code	. 0K	
g b_mag field d'			Semimaior	axis: 16.2	
19.6 298 0.472 20.2 298 1.046			Eccentricit	v: 0.0	
20.9 298 0.321		and the second second	Position ar	iale: 0.0	
20.8 298 0.175			Annulus in	ner scale: 1.5	
20.0 298 1.743			Annulus or	uter scale: 2.0	
19.6 298 2.126				,	
19.2 298 1.868 10.5 208 1.010					
20.6 298 2.450					
19.4 298 1.637					
iew Stop Close	1				
			Define	object aperture	Define sky aper
		• (Cop	py aperture	Calculate resu
	and the second second			Append	Save
	rea Set From Image g b_mag field d' 19.6 298 0.472 20.2 298 1.046 20.9 298 0.321 20.8 298 0.175 20.1 298 1.169 20.0 298 1.743 19.8 298 2.126 19.4 298 0.795 19.2 298 1.868 19.5 298 1.919 20.6 298 2.450 19.4 298 1.637	rea Set From Image	rea Set From Image g b_mag field d' 19.6 298 0.472 20.2 298 1.046 20.9 298 0.321 20.8 298 0.175 20.1 298 1.743 19.8 298 0.795 19.2 298 1.743 19.4 298 0.795 19.2 298 1.637 19.4 298 1.637 iew Stop Close Image	rea Set From Image g b_mag field d' 19.6 298 0.472 20.2 298 1.046 20.2 298 0.321 20.8 298 0.175 20.1 298 1.69 20.1 298 1.169 20.0 298 1.743 19.8 298 2.126 19.4 298 0.795 19.2 298 1.637 Position ar 19.4 298 1.637 Position 1.919 20.6 298 2.450 1.919 20.6 298 1.637 Position Annulus on Define Cor Terver in colspan="2">Close	rea Set From Image g b_mag field d' 19.6 298 0.472 0.29523 20.2 298 1.046 0.29523 20.9 298 0.321 0.6 20.8 298 0.175 0.1633 20.1 298 1.668 20.0 298 1.743 19.6 298 0.321 20.1 298 1.668 19.4 298 0.321 20.0 298 1.633 19.4 298 0.321 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298 1.637 19.4 298

Workshop

Task 5: Do some science

- 1. What is the pixel scale, in arcsecond/pixel, on the GMOS image?
- 2. What is the seeing (the FWHM of a point source in arcseconds) of the GMOS image?
- 3. What is the zero-point of the GMOS image?
- 4. What is the S/N and magnitude of the galaxy at 02:20:53.754 -38:32:45.48?
- 5. Make a histogram of the S/N of all the detected objects in the frame, as well as a histogram of the magnitudes. What is the 5-sigma limiting magnitude?

There are also reduced J/K-band images available in 0220/NIR/ directory

- 6. Align these images with the optical image and make a color image (Hint: use hastrom in IDL to align the images)
- Run SExtractor in dual-mode and make a color-magnitude diagram on K vs J-K of all the detected objects. (Hint: see the SExtractor manual for dual-mode extraction)

Workshop

Extra information

SExtractor (tool to extract objects; HW5,6,7) To Install:

- 1. Go http://www.astromatic.net/software/sextractor and download the source code, and compile/install in your home directory. The manual can be found in the website.
- 2. Add the line below in your .cshrc file and type 'source .cshrc'

`set path = (\$path /tmp_mnt/home/YOURDIR/sextractor-2.19.5/src)`

To run:

1. Need to put the default.* files in the directory where you store your images. The default.* files can be found in the sextractor/config/ directory if you install it yourself, or in /tmp_mnt/home/ccchen/sextractor-2.19.5/config/

2. Edit the default.sex file and input the zero-point, pixel scale, and seeing. Set the output image to 'APERTURES' to generate an output image.

3. Edit the output parameter file, default.param, to output 'NUMBER, FLUX_BEST, FLUXERR_BEST, MAG_BEST, MAGERR_BEST'

4. In the command line type: sex myfile.fits