The Conditions of Single and Dual AGN Formation in Late-Stage Galaxy Mergers

Collaborators: Julie Comerford, Jenny Greene, and David Pooley Are AGN Special?, Durham, 2018

Scott Barrows University of Colorado, Boulder

Galaxy mergers can trigger AGN

Simulations from Blecha et al., MNRAS, 2018

Potentially important for triggering some AGN (which ones?)

Simulations from Blecha et al., MNRAS, 2018

Not important for many (most?) AGN

Galaxy mergers can trigger AGN

Simulations from Blecha et al., MNRAS, 2018

Po (w AC on

Simulations from Blecha et al., MNRAS, 2018

Not important for many (most?) AGN

Potentially important for triggering some AGN (which ones?)

AGN triggering can happen for the SMBH in one or both of the galaxies.

In an on-going galaxy merger: If only a single SMBH is activeOffset AGN

Note: AGN 'presence' depends on the method of detection used and the adopted threshold

If both SMBHs are activeDual AGN

In an on-going galaxy merger: If only a single SMBH is activeOffset AGN

Do offset AGN or dual AGN require special conditions in mergers?

If both SMBHs are active **Dual AGN**

Numerical Predictions: Temporal Evolution of Mergers

Simulations from Capelo et al., 2017

SMBHs grow by accretion in mergers

Offset vs Dual AGN: distinction is important for merger-driven SMBH growth

Most of the action may occur at late merger stages: Accretion rates peak at < 1 kpc

Physical Separations of 2-8 kpc

Dual AGN

Comerford et al. 2015

Offset AGN

Physical Separations of 0.8-19 kpc

Barrows et al. 2016

AGN Merger Fraction Versus Nuclear Separation

All Separations: AGN merger fraction increases with decreasing nuclear separation ($\sim 3\sigma$)

General trends similar to larger scale pairs for both offset AGN and dual AGN (Ellison+2011, Satyapal+2014)

Small Separations (<1 kpc): Offset AGN merger fraction rises most strongly and peaks Probably similar or stronger evolution for dual AGN

Consistent with numerical predictions that frequency of AGN triggering peaks near nuclear coalescence

Barrows et al. 2017

AGN Merger Fraction Versus Nuclear Separation

All Separations: AGN merger fraction increases with decreasing nuclear separation ($\sim 3\sigma$)

General trends similar to larger scale pairs for both offset AGN and dual AGN (Ellison+2011, Satyapal+2014)

Small Separations (<1 kpc): Offset AGN merger fraction rises most strongly and peaks Probably similar or stronger evolution for dual AGN

Consistent with numerical predictions that frequency of AGN triggering peaks near nuclear coalescence

Barrows et al. 2017

Numerical Predictions: The Effect of Mass Ratio

Steinborn et al. 2016

Capelo et al. 2017

Numerical Predictions: The Effect of Mass Ratio

Martin et al. 2018

Mass Ratios of Offset AGN and Dual AGN in Late Stage Mergers

Mass Ratio ~ 460:1

Selection insensitive to merger mass ratio

Includes major mergers and minor mergers with large ratios - dependence of mass ratio can be tested over a large dynamic range

Mass Ratio ~ 50:1

Mass Ratio ~ 2:1

Dependence of AGN Triggering on Merger Morphology

Barrows et al. 2018, *in prep*

General increase in accretion level and efficiency with merger morphology

Suggests that the AGN may remember they are in mergers (at least during late merger stages)

Barrows et al. 2018, in prep

Offset AGN have similar minor and major merger factions as galaxy mergers without AGN: 90% minor, 10% major (Lotz et al. 2011)

Single AGN are not so special among mergers

By comparison, dual AGN may preferentially form in major mergers

Offset AGN: Mean Value: 70 Minor Mergers: 86% Dual AGN: Mean Value: 7 Minor Mergers: 43%

By comparison with offset AGN, dual AGN may be special:

major mergers
 (extreme tidal forces)

- Smaller nuclear separations (migration of gas and dust to nuclei)

- Large supplies of gas and dust

Barrows et al. 2018, in prep

By comparison with offset AGN, dual AGN may be special:

major mergers
 (extreme tidal forces)

- Smaller nuclear separations (migration of gas and dust to nuclei)

- Large supplies of gas and dust

Barrows et al. 2018, in prep

AGN Merger Fraction Versus Nuclear Separation

Barrows et al. 2017

Single AGN: no correlation (<1 σ)

Dual AGN: positive correlation (~3σ)

Conditions that form dual AGN are different from those of offset AGN

Selection Effects These AGN are all selected optically and detected in hard X-rays

Sensitive to relatively unobscured AGN

- X-ray selected dual AGN with small separations may be rare events
- Dual AGN may be more common if including more obscured systems (e.g. in ULIRGs)

Take-Away Points:

Offset AGN and dual AGN:

Observed frequency increases toward late merger stages

- Peaks at sub-kpc separations

Activity increases toward disturbed morphologies

- Suggests some information about the dynamics of late stage mergers is preserved

Take-Away Points:

Offset AGN *V.S.* **Dual AGN:**

Offset AGN morphologies similar to most mergers

- Majority reside in minor mergers

Dual AGN formed in special conditions: (caveat: this applies to X-ray selected AGN)

Dual AGN show a preference for major mergers

Transition from offset AGN to dual AGN:

- toward late merger stages
- increased gas supplies