[4B] Discovery of an Extreme lonized-gas Outflow in an *AKARI*-selected Ultra-luminous Infrared Galaxy at z = 0.5

Xiaoyang Chen^{1*}, Masayuki Akiyama¹, Hirofumi Noda¹, Abdurro'uf¹, Yoshiki Toba^{2,3}, Issei Yamamura^{4,5} Toshihiro Kawaguchi⁶, Mitsuru Kokubo¹, Kohei Ichikawa^{1,7}

¹Tohoku Univ.; ²ASIAA; ³Kyoto Univ.; ⁴ISAS/JAXA; ⁵SOKENDAI; ⁶Onomichi City Univ.; ⁷Columbia Univ.. *xy.chen@astr.tohoku.ac.jp

1. Introduction

Ultra-luminous infrared galaxies (ULIRGs, with infrared luminosity, $L_{\rm IR} > 10^{12} L_{\odot}$) are a population of the most intensely starforming galaxies in the local universe. They are thought to represent rapidly growing phase of massive galaxies. The vigorous starburst and / or AGN in ULIRGs can induce strong outflowing winds, which would blow out the gas and dust and terminat the activity of the galaxies.

3. SED analyses and galactic properties

Combining the photometric data from SDSS, *WISE*, *AKARI* and VLA FIRST Survey, we performe SED fitting with CIGALE.

• J0916a shows intense star formation but relatively weak AGN contribution in the IR luminosity.

SFR	$990 \pm 44 \ {\rm M}_{\odot} \ {\rm yr}^{-1}$
M_{\star}	$9.5 \pm 1.7 \times 10^{10} \ \mathrm{M}_{\odot}$
$L_{\rm unattenuated}^{\rm star}$	$6.9 \pm 0.3 \times 10^{12} \ \mathrm{L}_{\odot}$
$E(B-V)_{\rm SED}$	1.5 ± 0.1
$E(B-V)_{\text{Balmer}}$	1.0 ± 0.3
$L_{ m IR}^{ m dust}$	$5.8 \pm 0.3 \times 10^{12} \ L_{\odot}$
$L_{ m IR}^{ m tot}$	$6.1 \pm 0.3 \times 10^{12} \ L_{\odot}$
$L_{\rm bol}^{\rm AGN}$	$4.7 \pm 0.4 \times 10^{11} \ L_{\odot}$
$f_{ m IR}^{ m AGN}$	$6.27 \pm 0.66\%$
$f_{ m bol}^{ m AGN}$	$6.34 \pm 0.65\%$

2. Sample Selection

In order to construct a sample of ULIRGs at 0.5 < z < 1, we are conducting an optical followup program for bright 90- μ m FIR sources with a faint optical (i < 20 mag) counterpart selected in the AKARI FIS Bright Source catalog (Ver.2).

4. Extreme outflow indicated by broad [OII] and [OIII] lines

The spectral fitting is performed for the integrated spectrum (upper) and 2D long-slit spectroscopy image per line (bottom), after extraction of stellar continuum.

• Both of high- and low-ionization potential emission lines, e.g., [OIII] and [OII] doublets, show large velocity dispersions and shifts in relative to the stellar absorption lines.

$({\rm km} {\rm s}^{-1})$	[OII]	[OIII]
shift (v_{50})	-384 ± 20	-894 ± 38
width (w_{80})	1570 ± 85	2607 ± 172

the spectroscopic follow-up observation, indicates signatures of an extremely strong outflow in its emission line profiles.

6. Conclusion

J0916a shows extremely broad and extended profiles in both

and are even comparable to the luminous quasars at $z \sim 2$.

• The long-slit spectroscopy image shows that the outflow extends up to 6 kpc. AGN dominates the ionization in the outflow region.

5. Large energy ejection rate with weak AGN activity

The energy ejection rate of J0916a is estimated with two models: (1) assuimng the ionized outflowing gas in a spherically symmetric sector, $\dot{E}^{\rm sph}_{\rm k,out}$;

(2) assuimng an energy-conserving shocked bubble expanding into a uniform medium, $\dot{E}^{\rm bub}_{\rm k,out}$. For reference, we also calculate $\dot{E}^{\rm sph}_{\rm k,out}$ and $\dot{E}^{\rm bub}_{\rm k,out}$ for U/LIRGs and

[OIII] and [OII] emission lines, which indicate one of the most powerful outflow among galaxies at z < 1.6. However, the AGN activity in J0916a is relatively weak. The powerful outflow probably reflect a historical effect of the central engine.

7. Reference

• Chen et al. 2018, submitted to PASJ AKARI special issue

• J0916a shows one of the largest $\dot{E}_{k,out}$ among the galaxies at z < 1.6. However, the L_{AGN} (from MIR luminosity) of J0916a corresponds to only 1%-10% of L_{AGN} of the galaxies with similar $\dot{E}_{k,out}$. The low L_{AGN} implies the possibility that AGN lies in a fading status; while the observed extreme [OIII] and [OII] outflows probably reflect a historical effect of the central engine during its preceding active phase, due to the time-lag between AGN activity in a nuclear region (dusty torus) and outflow in an ionization cone. • The intense star formation activity also possibly contributes to the fast outflow in J0916a.