

Near-IR and Radio Explorations of Obscured AGNs in Advanced Mergers

- Identify traits that betray the AGN excitation and feedback
- Quantify the incidence of (obscured) AGNs triggered by interactions

Anca Constantin (JMU)

Shobita Satyapal (GMU), Barry Rothberg (LBTO), Krisztina Gabanyi (MTA-ELTE), **Ryan Pfeifle** (GMU), Sara Ellison (UVictoria), Laura Blecha (UFlorida), Jason Ferguson (JMU, GMU)

AGNs ↔ Galaxy mergers

- ΛCDM predicts that interactions are ubiquitous
- Theory predicts gas is funneled towards center
- Can give rise to M-σ relation
- Can explain similarity in cosmic evolution of SFR and BH growth
- AGN Feedback can quench star formation

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum

- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- secular growth builds bars & pseudobulges

- "Seyfert" fueling (AGN with M_B>-23)

- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback,
- but, total stellar mass formed is small

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled - get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios

merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" QSO host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

NGC 7252

M59

- QSO luminosity fades rapidly - tidal features visible only with very deep observations - remnant reddens rapidly (E+A/K+A) 'hot halo" from feedback

- sets up quasi-static cooling

(h) "Dead" Elliptical

- large BH/spheroid - efficient feedback - halo grows to "large group" scales: mergers become inefficient - growth by "dry" mergers

Hopkins et al. (2008); see also Volonteri et al. (2015)

AGN-Merger Debate

- Dahari et al. 1984
- Keel et al 1985
- Raffanelli et al 1995
- Canalizo & Stockton 2001
- Woods & Geller 2007
- Bennert et al. 2008
- Rogers et al. 2009
- Veilleux et al. 2009
- Koss et al 2010, 2012
- Ramos-Almeida et al. 2011
- Silverman et al. 2011
- Ellison et al. 2011
- Triester et al. 2012
- Shabala et al. 2012
- Sabater et al. 2013
- Satyapal et al. 2014
- Kaviraj et al. 2015
- Kocevski et al. 2015
- Glikman et al. 2015
- Fan et al. 2016
- Ricci et al. 2017
- Goulding et al. 2017
- Donley et al. 2018

THE BULK OF THE BLACK HOLE GROWTH SINCE $z\sim1$ OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER–AGN CONNECTION*

MAURICIO CISTERNAS^{1,20}, KNUD JAHNKE¹, KATHERINE J. INSKIP¹, JEYHAN KARTALTEPE², ANTON M. KOEKEMOER³, THORSTEN LISKER⁴, ADAY R. ROBAINA^{1,5}, MARCO SCODEGGIO⁶, KARTIK SHETH^{7,8}, JONATHAN R. TRUMP⁹, RENÉ ANDRAE¹, TAKAMITSU MIYAJI^{10,11}, ELISABETA LUSSO¹², MARCELLA BRUSA¹³, PETER CAPAK⁷, NICO CAPPELLUTI¹³, FRANCESCA CIVANO¹⁴, OLIVIER ILBERT¹⁵, CHRIS D. IMPEY⁹, ALEXIE LEAUTHAUD¹⁶, SIMON J. LILLY¹⁷, MARA SALVATO¹⁸, NICK Z. SCOVILLE⁷, AND YOSHI TANIGUCHI¹⁹

Heavily obscured quasar host galaxies at $z \sim 2$ are discs, not major mergers^{*}

Kevin Schawinski, 1,2 †
‡ Brooke D. Simmons, 2,3 C. Megan Urry,
 1,2,3 Ezequiel Treister 4 and Eilat Glikman
 2,3 §

Morphologies of $z \sim 0.7$ AGN host galaxies in CANDELS: no trend of merger incidence with AGN luminosity

C. Villforth,^{1,2}★ F. Hamann,¹ D. J. Rosario,³ P. Santini,⁴ E. J. McGrath,⁵ A. van der Wel,⁶ Y. Y. Chang,⁶ Y. Guo,⁷ T. Dahlen,⁸ E. F. Bell,⁹ C. J. Conselice,¹⁰ D. Croton,¹¹ A. Dekel,¹² S. M. Faber,⁷ N. Grogin,⁸ T. Hamilton,¹³ P. F. Hopkins,^{14,15} S. Juneau,¹⁶ J. Kartaltepe,¹⁷ D. Kocevski,¹⁸ A. Koekemoer,⁸ D. C. Koo,⁷ J. Lotz,⁸ D. McIntosh,¹⁹ M. Mozena,⁷ R. Somerville²⁰ and V. Wild²

Host galaxies of luminous z~0.6 quasars: Major mergers are not prevalent at the highest AGN luminosities *

C. Villforth^{1,2}, T. Hamilton³, M. M. Pawlik², T. Hewlett², K. Rowlands², H. Herbst⁴, F. Shankar⁵, A. Fontana⁶, F. Hamann^{4,8}, A. Koekemoer⁷, J. Pforr^{9,10}, J. Trump^{11,12}, S. Wuyts¹

and many more ...

Schmitt 2001

٠

- Dunlop et al. 2003
- Grogin et al 2005
- Coldwell & Lambas 2006
- Pierce et al. 2007
- Li et al. 2006, 2008
- Ellison et al. 2008
- Darg et al. 2009
- Gabor et al 2009
- Reichard et al. 2009
- Cisternas et al 2011
- Boehm et al. 2012
- Kocevski et al 2011,2012
- Simmons et al. 2012
- Villforth et al. 2014,2017
- Schawinski et al. 2011
- Kocevski et al. 2012
- Fan et al. 2014
- Rosario et al. 2015
- Bruce et al. 2016
- Mechtley et al. 2016
- Hewlett et al. 2017

Volonteri+ 15

Challenges

- AGN identification
- Sample size
- Control samples

Multiwavelength diagnostics don't always pick out the same AGNs!

e.g., Hickox et al. 2009

- Method of morphological classification
- Surface brightness dimming tidal tails may not be seen
- High SFR masking AGN signatures
- AGN/host contrast ratio in Type 1 AGNs
- Merger stage (e.g., Volonteri+ 15, Capelo+ 17)
- Time delay between AGN ignition and merger signs
- Different AGN fueling processes at play (at low and high L_{bol})

Peak BH growth occurs at small pair separations and is likely obscured

also Volonteri+ 2015; Capelo+ 2017

- At D<10kpc
 - strong SFR +
- Efficient Dual SMBH accretion
- High extinction values

- → Dual AGNs may be optically obscured the majority of the time when they are active
- \rightarrow complicate detection of the AGN

The sample: the brightest advanced mergers preselected by WISE

Sample Selection:

- Drawn from Galaxy Zoo (~667,000 galaxies)
- Required high probability of merger (70%; ~1,500)
- keep only separations < 10kpc
- Required WISE W1-W2>0.5 (86 candidates)
- Obtained follow-up Chandra (cycles 15 and 17; PI: Satyapal) observations of the 15 brightest candidates

(redshift: 0.02 – 0.1; 1" = 0.7 – 2 kpc)

=> 25 detections in 0.3 - 8.0 keV

Satyapal et al. (2014)

Merger triggered AGNs: detected as red WISE objects, and not seen as AGNs in optical.

The IR–Selected Advanced Mergers

- SDSS fibers available for at least one nucleus
- Optical spectra = 80% consistent with Starbursts not AGNs:

The IR–Selected Advanced Mergers: 0.3 – 8 keV detections

Pfeiflle et al. 2018

How about the rest of the sources...

L_{2-10 keV} ≈ comparable to upper limit of most luminous SF galaxies (e.g., Lehmer et al. 2010) => X-ray emission from XRBs?

Large Binocular Telescope (LBT):

=> Highly suggestive of presence of at least one AGN in <u>all</u> mergers

2 new dual AGN systems!

Broad emission lines (FWHM > 1000 km/s) in 7 galaxies

Broad emission lines (FWHM > 1000 km/s) in 7 galaxies

Kinematics of [Fe II] and H₂ also suggestive of gas flows

- [Fe II] blueshifted relative to systemic velocity (Δv ≈ 300 km/s)
- No shift in H2
 - \Rightarrow Evidence for outflows?

Near-IR Line Diagnostic diagrams consistent with AGN ionization in (almost) <u>all</u> cases

[Fe II]/Paβ:

constrains the amount of [Fe II] produced by SBs vs.
AGN jets/shocks.

(e.g., Simpson+1996, Larkin+ 1998, Rodriguez-Ardila+ 2005, Riffel+ 2013)

Near-IR Diagnostic diagrams consistent with AGN ionization in (almost) <u>all cases</u>

(adapted from Rodríguez-Ardila, Riffel & Patoriza 2005)

Summary

- SF and AGN activity peak during the advanced merging phase but highly obscured
- IR selection produced the largest # of dual AGN (candidates) so far

increased the number of confirmed dual AGNs by over 50%

- X-rays: at least 1 detection in all mergers, with duals (triples) in 8 out of 15 systems
- Near-IR spectroscopy:
 - Evidence of hidden BLR, also possible detection of outflows
 - 40% with coronal lines: <u>at least two</u> secure new AGN pairs
 - Diagnostic diagrams consistent with AGN ionization in <u>all</u> cases; H₂ excitation most likely produced by AGN

Satyapal et al. 2017, Pfeiflle et al. 2018, Pfeiflle et al. in prep., Constantin et al. in prep.