An AGN special: Feedback across cosmic epochs

Giovanni Cresci (INAF – Arcetri)

M. Brusa, A. Marconi, R. Maiolino, M. Perna, M. Mingozzi, G. Venturi and the MAGNUM team

Durham, 2/8/18

Why most baryons are not condensed into stars?

Cosmic Baryon Fraction ($\Omega_b/\Omega_0 = 0.15$ from WMAP)

Stellar feedback can't explain missing massive galaxies (e.g. Hopkins+06, Croton+06, Murray+05, Menci+08, ...)

> #AGNSPECIAL18 FEEDBACK FORECAST

Are Outflows ubiquitous?

Do we have evidences of effects on the host?

Balmaverde et al. (2015): SDSS+Herschel selected QSOs (see also e.g. Leung+17, Woo+17, and many others)

No trend between outflow velocity and SFR (BUT: different timescales...)

Harrison et al. (2015) – KASHz survey 82 x-ray selected AGNs with KMOS (see also e.g. Perna+17, Forster-Schreiber+15,18)

> Many theoretical predictions, increasing evidences of widespread outflows, but still few observations of feedback effects on host galaxies...

A feedback showcase: XID2028 at z=1.6

Selected to be X-ray bright and optically obscured (Brusa+10,15)

SINFONI IFU observations J band 6 hrs

> Scale 0.125"x0.125" PSF=0.6"

 $M > 300 M_{\odot}/yr$

Outflow effects on the host galaxy

> Archival H band (20') integrated spectrum on the central 1"x1"

Residual spectrum integrated on Regions A and B

Narrow Ha map with contours of:

Rest frame U band (HST)

[OIII] blue wing flux

Both "Positive" and "Negative" feedback in action

More outflows and feedback: High EW([OIII]) selection

Ha

Sample of 6 QSOs at z~2.4 selected for high EW([OIII])>10Å observed with SINFONI

Carniani et al. (2015, 2016)

Narrow Ha emission tracing star formation is anti-correlated with fast outflows: "negative" (+ "positive"?) feedback revealed but still SFR>100 M_o/yr ...

ALMA deep follow-up of XID2028: CO(5-4) line emission

ALMA Observations in CO(5-4) + continuum taken in Cycle 3

CO(5-4) is detected at >10 σ , FWHM=0.33" log(L'_{CO(5-4)}/K km s⁻¹ pc⁻²) = 9.63

Broad (FWHM~500 km/s) asymmetric line profile

The central component shows a velocity gradient along the source in the NW-SE direction

M_{dyn}≈ 6x10¹¹ M_☉

Brusa, GC et al. 2018

Brusa, GC et al. 2018

A spatially resolved CO(5-4) outflow

Imaging of the blue (< -350 km/s) and of the red tail (>350 km/s) reveal a bi-directional outflow out to ~ 10 kpc and v ~ 700 km/s CO mass outflow rate ~ 150-750 M_☉/yr

The blueshifted outflow is co-spatial with the ionized outflow from [OIII], in between the star forming regions traced by Hα, dust continuum and U band

(see also Herrera-Camus+18)

First direct detection of a spatially resolved CO outflow at high-z Spatially coincident with the ionized outflow component

Molecular gas content of XID2028

We derive a total $M_{gas} = 1\pm0.5 \times 10^{10} M_{\odot}$ consistent with estimate from RJ dust continuum Gas fraction < 5% despite SFR~270 M_☉/yr!

This converts in a t_{depl}=45-80 Myr (10-30 Myr including outflow), ~2 orders of magnitude lower than the expected position on the plot for its sSFR

Evidences of QSO feedback Removing gas from the star forming host galaxy!

Gas masses in z>1 obscured QSO hosts

Compilation of all 24 z>1 obscured QSO hosts with M_{*} and CO observations

Indication that (some) QSO hosts have lower f_{gas} than normal galaxy (Sargent+14 model)

(see also M. Banerji's talk on Tuesday, D. Rosario's one later today and M. Talia's poster)

Perna, GC et al. 2018

Positive Feedback: A new mode of star formation?

1) AGN-induced pressure on the gas-rich disk (e.g. Silk et al. 2013)

Very few direct observations so far:

Radio jets inducing star formation on companion galaxies (SFR~1-200 M_☉/yr) (See also Kramer et al. 2004, Croft et al. 2006, Feain et al. 2007)

Jet-ISM interaction triggering star formation (see e.g. Crockett et al. 2012, Salome' et al. 2015, Santoro+2015ab,2016)

Powerful QSO outflows compressing gas in the disk (SFR~10-100 M_{\odot} /yr)

Positive Feedback: A new mode of star formation? 1) AGN-induced pressure on the gas-rich disk (e.g. Silk et al. 2013)

(see also Alonso-Herrero+18)

Positive Feedback: A new mode of star formation?

1) AGN-induced pressure on the gas-rich disk (e.g. Silk et al. 2013)

GC et al. 2015b

Positive Feedback: A new mode of star formation?

2) feedback-triggered star formation directly in the outflow (e.g. Ishibashi & Fabian 2013, 2014, Zubovas & King 2013,2014)

X-Shooter+MUSE observations of IRAS2318-59, a merging system at z=0.05 hosting both AGN and starburst activity

Maiolino, Russell, GC et al. 2017 (Nature)

Ionization neither dominated by the AGN

nor by shocks

Positive Feedback: A new mode of star formation? 2) feedback-triggered star formation directly in the outflow (e.g. Ishibashi & Fabian 2013, 2014, Zubovas & King 2013,2014)

a)

2.5

Ionization parameter comparable (or higher) to local SDSS galaxies → in situ star formation!

cm⁻²] tellar fit HE+[NeIII] esiduals 2.0 s^{-1} HeII 1.5erg $[10^{-17}]$ 0.5 E. 00 4000 4200 4600 4800 5000 5200 4400 observed wavelength [Ang] b) gas: narrow comp. (host gal.) gas: broad comp. (outflow) 200 0-B-A stars (Balmer lines) Red supergiants (Call triplet) stars (HeI) \mathcal{A} Ballistic tracks bound Velocity [km/s] unbound -200 trajectories of stars formed in the outflow gaseous -400outflow c) Blueshifted outflow -6008 6 4 2 Distance from nucleus towards NE [kpc]

All stellar features in the outflow region (1-3 kpc distance), show a blueshift (v~100 km/s) relative to the galactic disc Velocity difference with gas explained by simple dynamical model

Zubovas & King (2014)

Maiolino, Russell, GC et al. 2017 (Nature)

host galaxy

disc+bulge

OIII

Hβ

bserved

SUMMARY

Finally directly observed in high-z QSOs hosts, through IFU spectroscopy and ALMA CO mapping

First evidences are now suggesting Star Formation induced and produced in QSO/AGN outflows as well

Open issues:

- which is the role of positive feedback?
- not yet clear if negative feedback is really affecting the whole galaxy gas reservoir and if the gas is escaping the halo \rightarrow is feedback mostly ejective or delayed (or both)?

or

(models: Muratov+15, Bower+16, Woo+17, Davè+16, Angles-Alcazar+17 etc...)

Next steps:

- Larger unbiased samples of AGN with IFU observations (e.g. SUPER survey)
- Detailed studies of outflow properties and its interaction in local galaxies (e.g. MAGNUM) •

MAGNUM: Measuring Active Galactic Nuclei Under MUSE Microscope

- Targeting Nearby AGNs (D < 50 Mpc) observable from ESO
- Seeing limited (~1"):
 15 pc (@4Mpc)
 115 pc (@30Mpc)
- □ so far 10 objects observed (900,000 spectra!!)
- Multi-wavelength data available: Chandra, XMM-Newton, Galex, HST, Spitzer, Herschel, ALMA, Radio...

PI: A. Marconi (Univ. Firenze)

NGC 1365: an AGN in the Great Barred Galaxy

NGC 1365: mapping the mass outflow rate

2.5

Velocity resolved BPT diagrams with MAGNUM

Mingozzi, GC et al. in prep

Velocity resolved BPT diagrams (Circinus)

The highest [N II]/Hα ratios correspond to the edges of the outflow and highest velocity dispersions: Shock excitation?

The lowest [N II]/Hα ratios correspond to the highest ionization parameters U in the center of the outflow: Matter bounded Clouds?

Mingozzi et al. in prep

Velocity resolved BPT diagrams (global)

log [OIII]/H β

[NII] BPT diagram

- Binette et al. 1996 photoionization models with matter bounded clouds
- Allen et al. 2008 shock models (Mappings III) n = 100 cm⁻³

Mingozzi, GC et al. in prep