The influence of galaxy mergers on the star formation history of luminous AGN

Anastasia Efthymiadou ${ }^{1 *}$, C. Villforth ${ }^{1}$, V. Wild ${ }^{2}$, P. C. Hewett ${ }^{3}$

${ }^{1}$ University of Bath, UK; ${ }^{2}$ University of St Andrews, UK; ${ }^{3}$ University of Cambridge, UK $\quad{ }^{*}$ a.efthymiadou@bath.ac.uk We study the connection between star formation and black hole growth in luminous AGN involved in galaxy mergers. Galaxy mergers constitute a potential candidate for providing cold dense gas to the central region of a galaxy, triggering both circumnuclear star formation and AGN activity. To this end, we investigate the stellar population properties of AGN host galaxies ($z \sim 0.3$) that show neighbouring galaxies using SDSS DR7 data. We present spectroscopic analysis results on the comparison of star formation histories as a function of projected distance. We witness younger stellar populations with decreasing distance for the case of neighbours, confirming the mergers-starburst correlation, while the AGN host galaxies do not reveal a similar trend. Although the activity of the central AGN does not show to be directly driven by the merger, our results support the starburst-AGN activity connection.

Sample Selection

We select AGN showing neighbours at distances and velocity seperations up to 1 Mpc and $2,000 \mathrm{~km} / \mathrm{s}$ respectively

- 931,208 spectra of galaxies and AGN from SDSS DR7 [1]
- 5,571 AGN of redshift $0.2 \leq z \leq 0.4$ [2] Search for neighbours around central AGN

Final: 477 spectroscopic pairs of central AGN-neighbour with different projected separations

Methods

Extract host galaxy spectrum of AGN and compare it to corresponding Neighbour galaxy spectrum

- Decompose each spectrum by performing MCMC fitting [3] and using 19 spectrum components-templates for AGN, 7 galaxy components for case of neighbours
- Arrange AGN-neighbour pairs as a function of projected separation
- Stack AGN and neighbours spectra belonging to each separation range

Stacked AGN host galaxies Fig. 2

Fig. 3

The host galaxies have younger stellar populations, as their H_{δ} EW values are greater. The H_{δ} values for the case of the neighbours increase with decreasing separation, translating into either a more recent starburst or a star-formation enhancement.
The host galaxies
spectra are star-forming
at all separations
confirming the
starburst-AGN activity
connection. There is no
strong evolution with
merger stage. Therefore,
they do not seem to be
directly driven by the
merger [4].

The host galaxies spectra are star-forming all starburst-AGN activity connection. There is no strong evolution with merger stage. Therefore, directly driven by the merger [4].

The neighbours show younger stellar populations with decreasing separation supporting the mergersstarburst correlation [5] (see also Fig. 3 \& 4)
$\lambda[\AA]$

The neighbours show younger mean age at the smallest separation range, as their H_{δ} EW is stronger.

