AGN in a sample of nearby LIRG pairs: exploring the influence of a companion

N. Loiseau, A. de Rosa, L. Ballo, S. Bianchi, T. Bogdanovic, R. Decarli, M. Guainazzi, J. Heidt, R. Herrero, B. Husemann, S. Komossa, Z. Paragi, M. Pérez, E. Piconcelli, K. Schawinski, L. Tomás, C.Vignali (the MAGNA collaboration (*)
Are AGN in interacting galaxies special?

Pairs of galaxies with two AGN have been discovered mainly serendipitously in X-rays (Komossa+03, Ballo+04, Guainazzi+05), or radio (Green+10). Few of them, searching in large X -ray samples (Koss+12, Teng+12, Comerford+15).

X-rays are probably the most efficient tool to detect hidden AGN (i.e. Koss+12): the closest dual AGN has been detected in X -rays at sub-pc scale (Severgnini+18). Radio interferometry is also a perfect tool for the detection of very close AGN ($r_{p} \sim 89 \mathrm{pc}$ in J0942+0623, Srianand $+15, r_{p}$ ~ 7.3 pc in J0402+379, Bansal+17) although is not effective in finding new candidates.

We are studying a sample of 70 nearby ($z<0.05$) IR bright Arp-Madore major mergers (Cat-2), for which Sekiguchi+92 (S\&W) obtained optical/IR spectra. We have previously observed:

3 pairs with projected separations $10<r_{p}<100 \mathrm{kpc}$ with XMM-Newton (Jiménez-Bailón+07). AGN were detected in 5 of the 6 galaxies, the most clear case of pairs of AGN being the most separated pair.
8 pairs of advanced mergers with similar separations ($r_{p} \sim 10 \mathrm{kpc}$) with Chandra (Tomás+19, in prep.). An AGN was detected in at least one of the galaxies in 6 of the 8 pairs.
We present here new XMM-Newton observations of 5 more pairs of this sample, which have been selected using their WISE IR colors as a diagnostic tool.
Archival search for XMM-Newton and Chandra observations provided data of other 14 galaxies of the sample (see table below).

Images of the new 5 pairs of galaxies observed with XMM-Newton: left: X-ray emission in the $0.3-8.0$ keV
band of erlaid on DSS2 color images, centre: X-ray emission in the $0.3-1.2$ keV band overlaid on optical band, overlaid on DSS2 color images, centre: X-ray emission in the $0.3-1.2$ keV band overlaid on optical
DSS2 contours, right: X-ray emission in the $1.2-8.0$ keV band overlaid on optical DSS2 contours ("Aladin DSS2 contours, right: X-rav emission in the $1.2-8.0 \mathrm{keV}$ band
Sky Atlas", CDS, Fronce, was used to produce these images).

412 NW			${ }^{7} .196-15$	011957.12-4116	0.152	4.073	1.35E+42			
AM		${ }^{8.50}$								
		8.15								
${ }_{\text {Am }} \mathbf{3} \mathbf{3 1 6 - 5 7 3 7 3 \mathrm { E }}$		6.48 15.00 1.0		J031743.77-572647.6	${ }^{0.332}$	4.058				
Am 31656573 W		15.00								
AM 0337-711 N		11.00	$2.000-14$		0.335	3.942				
1337-7115		11.00								
AM $0.50-374 \mathrm{NE}$										
		${ }_{21.73}^{21.93}$								
Am $0350-535$ SE		6.99	2.02	j063206.93-53537		${ }^{3.748}$				
AM $070-273$		9.09		J070	0.222	${ }^{4.307}$				
273 W						${ }_{4}^{4.661}$				
AA 093		${ }_{5}^{598}$	3.1	J0907190.72-280005.2	0.312	4.157	$2.76{ }^{\text {cea }}$			
AM 1204-314 5	0.022	${ }_{5.93}^{5.58}$	${ }_{8.59-15}$	122065.192-315659.2	0.483	4.465	5.17243	2.96		
AM 1211-465 NE		10, 19				4.256	4.80 E			
Am 1211.4655 sw	0.018	435			125	4.555	${ }^{2.687}$			
AM 1217-354 NE	${ }^{0.057}$	${ }_{43,55}^{4313}$	3.94t-14	121958.9.-3.3573,	1.159	3.346	9.688+43	${ }^{5} .211$		
AM 1217.554 SW	0.05	43.13	${ }_{\text {5 }}$ 5.85E-1				$2.31{ }^{\text {cta }}$			
	${ }_{0}^{0.03323}$	${ }^{11.71}$	${ }_{9} 9.23$ E-12	${ }^{1133440.73-23364.7}$	${ }^{0.311}$	${ }^{3.386}$ 3.983				
AM 1457-261 SE	0.0		2.02E-13	1150029.24-26265	0.583		1.298	.06		
AM $1457-2615 \mathrm{sw}$			4.82	115026.772-262710			8.95			
AM 1800.574	0.0	20		-	0.408	4.894				
AM 1890.577 NE		29.57	1.948-13	181339770.574339		4.837	$\frac{8.112+43}{231543}$			
Am 1800		$1{ }^{19.7}$	5.24E-14	181390.34.574453	${ }^{0.369}$	4.500				
AM	0.02	31.40 3295	1.15E-14	1204520.26-67322	${ }^{0.238}$	4.231	1.09			
AM		${ }^{32.95}$	2.806-14	1204522.1.6-6730060	${ }^{0.300}$	4.324	${ }_{\text {5 }}^{5}$			
AM		9,988	1.76-14	.11.10.69211		4.098	2.878+43			
Am 2094.691 sw		${ }^{9.83}$	3.85-15	1205410.0.6.992296	${ }^{0.120}$	${ }_{\text {3, } 385}$				
AM 2055-521 5w S2		${ }^{239.58}$	1.99E-13	12059912.85-52002,	1.219	${ }^{3.138}$	${ }^{9} .45$			
AM 2055-521		22.58 2584 25.	1.677-14	J205353.87-51591.7.	-0.039	0.621	1.73			
AM			7.288-15	J205928.63-424614,	0.115	4.212	1.12			
				509312.515	0.306	4.087	2.71	1.65		
9-425 NE	0.0348	24.01		32212.93	0.532	4.540	$2.07 E^{+43}$			
$\mathrm{AM} 2319.425 ~ S w ~ S 2 ~_{\text {S }}$	0.0349	24.11	5.73E-15	232211.61-43543.9	-0.057	1.985	1.36E+42	1.12E+42	1.73 E41	xMM+
Parameters of the LIR major mergers observed with XMM-Newton and Chandra. S2: previously classified as Sy2; HI: has been detected in HI. " + ": X rays observations by our team; Fx : X-ray flux ($0.3-8.0 \mathrm{keV}$) of the nuclear sources. Highlighted are the new pairs observed with XMM-Newton. Matched WISE sources are also listed together with their colors. The $12 \mu \mathrm{~m}$ luminosity is used to estimate their possible AGN X-ray luminosity Lxcalc, using the relation determined by Gandhito9 for AGN. For most of these pairs the observed X-ray luminosity is lower indicating that part of the $12 \mu \mathrm{~m}$ luminosity originates in a different region from the nuclear X -ray source, or that the nuclear X -ray emission is more absorbed than what we estimated.										

Studying "twin" (similar size and mass) interacting galaxies could provide a clue on the role of interactions in AGN activation. We would expect to detect two AGN unless the active stage duration is so short that two nuclei are rarely active simultaneously, or unless they are often very obscured, as recently proposed.
Known facts:
$>$ ULIRGs are mergers - known since IRAS Catalogue of BG in 1985
\rightarrow Most low-z Radio Galaxies are mergers - Heckman 86, Colina \& de Juan 95, Ramos Almeida +12, Tadhunter +16 .
$>$ Fraction of AGN in mergers increases with smaller separations - Silverman +11, Satyapal +14, Ellison +15 .
$>$ Radio-loud AGN are mergers - Chiaberge +15 .
$>$ AGN are 5 times more likely to be obscured if hosted by mergers -WISE IR colours - Weston +16 .
$>$ Close post mergers are the best (and obscured) candidates for dual AGN - Blecha+18.
$>$ Obscuring material covers $\sim 95 \%$ of the X-ray sources in later merger stages - Ricci+17.

- AGN activity suppression has recently been proposed for the West member of ESO 509-IG066 (AM 1331-231) - Kosec+17

We analyzed our observations of three sets of LIR major mergers of the S\&W sample, one selected with different separations, other as post-mergers with close separations, and the 3rd one based on MIR (WISE) colors. Our aim was to characterize the physical conditions of interacting galaxies hosting AGN pairs detectable in X-rays. We have been quite successful in detecting Dual AGN detectability is certainly dependent on the high obscuration level occurring in mergers, as well as on occasional suppression of the AGN activity, as recently observed by Kosect17.
suppression of the AGN a
Some of our results are:
The X -ray spectra of some of the galaxies of this sample show strong evidences of AGN activity, like the pair AM 1211-465 NE / SW. This is the less perturbed and one of the most separated pairs of our sample, confirming the results by Ellison+11 that pairs of AGN can be found at large separations even if they are more frequent at shorter separations. AGN in closer
separation pairs could be more difficult to detect due to their higher obscuration. As Blecha+17 proposes close post mergers are the best candidates for dual AGN, but the most obscured.
Individual AGN were detected in several pairs: AM 0127-524 S, AM 0545-453 S, AM 0905-274 W and AM 2222-313.
For AM 1217-354 SW, AM 2055-521 SW and AM 2319-425 NE the X-ray nuclear emission is compatible with their previous classification as Sy2. The nuclear emission in the Sy2 AM 2318-425, instead, was not detected.
The spectra and luminosity of pairs like AM 0707-273 E/W or AM 0316-573 E / W, would be compatible with a very heavy absorption as observed in other binary AGN serendipitously discovered in X-rays (Bianchi+10, Piconcelli+10 and Koss +11). The X-ray luminosity of the nuclei of these galaxies is in most cases lower than the one expected if their WISE $12 \mu \mathrm{~m}$ luminosity was purely coming from a nuclear AGN, as it happens for very bright AGN (e.g. Gandhi+09). The emission could originate in a different region from the nuclear X-ray source, or the nuclear X-ray emission could be heavily absorbed.
Besides the nuclear emission, some of these pairs show some bright extranuclear sources (e.g. AM 2319-425), or some extended emission (e.g. AM 2222-313), probably both consequence of the interactions.

