Clustering of hard X-ray selected AGN

Meredith Powell

Yale University

Advisor: Prof. Meg Urry

Also with: Nico Cappelluti, Mike Koss, Claudio Ricci, Benny Trakhtenbrot, Alexis Finoguenov, Viola Allevato, Marco Ajello, Kyuseok Oh, Kevin Schawinski, Nathan Secrest

Clustering \rightarrow environments

Halo mass

Field galaxies

Galaxy groups

Galaxy clusters

Large-scale clustering strength

Previous measurements

Are Obscured (type 2) or Unobscured (type 1) AGN more clustered?

Obscured

- IR AGN, z~1
 Hickox et al. 2011, Elyiv et al.
 2012, Donoso et al. 2014,
 Dipompeo et al. 2014, 2017
- X-ray AGN, z~0 Krumpe et al. 2018
- Optical AGN, z<0.09 Jiang et al. 2016

Consistent

- IR AGN, z~1 Mendez et al. 2016, Geach et al. 2013
- X-ray AGN, z~0.3 Krumpe et al. 2012

Unobscured

- X-ray AGN, 0.5<z<3 Allevato et al. 2011, 2014
- X-ray AGN, z~0 Cappelluti et al. 2010

Swift/BAT hard X-ray selection – an unbiased sample! 1.0Comptoncounts Obscured thick 0.8 Fraction of detected 0.6 0.4 ROSAT eROSITA Chandra z=10.2 Chandra z=2**NuSTAR** BAT 0.0^l 10²³ 10²⁰ 10²¹ 10²² 10²⁴ 10²⁵ N_H

Swift/BAT AGN Spectroscopic Survey (BASS)

Swift/BAT AGN Spectroscopic Survey (BASS)

Measure clustering of BASS AGN via cross correlation with 2MASS galaxies

Galaxy (AGN) - halo connection

Halotools (Hearin et al. 2016)

- 1. Obtains halo catalog from DM simulation
- 2. Populates halo catalog with defined model
- 3. Computes 2-pt. statistics ($W_{p GG}$, etc.)

https://github.com/astropy/halotools

AGN-galaxy cross-correlation

AGN cluster like galaxies of the same stellar mass

Environmental dependence of Obscuration

Environmental dependence of Obscuration

Obscured AGN \rightarrow denser environments

Powell et al. 2018; see also Krumpe et al. 2018

What about assembly bias?

- Halo clustering also depends on formation epoch
 - Old halos cluster more strongly then young halos
 - Correlated with concentration

different host halo concentrations → different small-scale and large-scale clustering

What about assembly bias?

Unobscured: $\langle c_{vir} \rangle = 8.5 \rightarrow$ halo formation epoch z ~ 1

Hints for assembly bias

• 2MASS group catalog (Lu et al. 2016) : similar halo mass distributions

Hints for assembly bias

- 2MASS group catalog (Lu et al. 2016) : similar halo mass distributions
- Evidence that SDSS Type 1 AGN have fewer close pairs (Jiang et al. 2016, Villarroel & Korn 2014)

Host galaxy obscuration?

- Obscured AGN with merging and edge-on galaxies eliminated
- Unobscured AGN

Taking out clear cases of mergers, galaxy interactions, and host galaxy obscuration in obscured AGN did not change clustering difference

Different halo assembly histories?

Stripe82X + XMM-XXL-N

- High-L_x AGN at moderate redshifts
 - ~50 deg²
- Completion of N_H estimates coming soon
- Environmental luminosity dependence beyond M_{*}?

*with Justin Johnson (University of Miami)

Stripe82X + XMM-XXL-N

(Preliminary)

Ζ

Summary

- Local Swift/BAT AGN (L_X ~ $10^{43.5}$ erg/s) live in environments similar to inactive galaxies of same stellar mass
- Obscured AGN live in denser environments than unobscured AGN. Either:
 - They reside in halos of different masses & occupation statistics, or
 - They reside in halos of different concentrations/ages
- New high L_X clustering measurements at $z\sim 1-2$ coming soon!

2MASS autocorrelation function

Stellar Masses: Using K_s-band luminosities, fit for M_{*}/L_K

HOD results

Obscured vs. Unobscured AGN

Clustering Differences persist after matching Eddington ratio distributions