Do galaxy mergers make AGN special? Lisa K. Steinborn

in collaboration with M. Hirschmann, K. Dolag, F. Shankar, S. Juneau, M. Krumpe, R.-S. Remus, A. F. Teklu, T. Miyaji

magneticum.org

Steinborn+18

lisasteinborn.de

The HOD of AGN

magneticum.org

Steinborn+18

lisasteinborn.de

MAGNETICUM

43.8 42.7

44.7 45.2

MAGNETICUM

43.4 46.3

Steinborn+18

Steinborn+18

Do galaxy mergers make AGN special?

Thanks for your attention!

www.magneticum.org

www.lisasteinborn.de

Lisa K. Steinborn

Appendix

more information:

www.magneticum.org

Our simulations include:

- thermal conduction (Dolag et al., 2004)
- star formation
- chemical enrichment
- supernova feedback (Tornatore et al. 2007)
- metals
- sixth-order Wendland kernel (Dehnen & Aly 2012)
- low viscosity SPH scheme
- magnetic fields (passive)
- BH growth and AGN feedback

		JLEIIIDU	A STANDARY VARIANT A STATUTION		
	m _{dm}	m _{gas}	eps _{dm}	eps _{gas}	eps _{stars}
mr	1.3e10	2.6e9	10	10	5
hr	6.9e8	1.4e8	3.75	3.75	2
uhr	3.6e7	7.3e6	1.4	1.4	0.7
xhr	1.9e6	3.9e5	0.45	0.45	0.25

Hirschmann+14,

Steinborn+15, Teklu+15, Bocquet+15, Dolag+15,

Table 2: Mass of dm and gas particles (in Msol/h) at the different resolution levels and the according softenings (in kpc/h) used.

	Box0	Box1	Box2b	Box2	Box3	Box4	Box5
[Mpc/h]	2688	896	640	352	128	48	18
mr	2*4536 ³	2*1526 ³		2*594 ³	2*216 ³	2*81 ³	
hr			2*2880 ³	2*1584 ³	2*576 ³	2*216 ³	2*81 ³
uhr					2*1536 ³	2*576 ³	2*216 ³
xhr						2*1536 ³	2*576 ³

Table 1: Number of particles used in the *Magneticum Pathfinder* and *Magneticum* simulations for the different resolution levels *mr*, *hr*, *uhr* and *xhr*. The red entries mark simulations which are currently running or not ran to z=0, the gray entries mark future, planned simulations.

