The birth of giants: Quasars and their host galaxies in the early universe

Chiara Mazzucchelli, Fabian Walter, Roberto Decarli, Eduardo Bañados, Ema Farina, Xiaohui Fan, Chris Carilli, Ran Wang, ...

• Bright sources: measure properties of the IGM

- Bright sources: measure properties of the IGM
- Constrain supermassive black hole formation models

- Bright sources: measure properties of the IGM
- Constrain supermassive black hole formation models
- Properties of the host galaxies
 - coevolution?
 - AGN feedback?

- Bright sources: measure properties of the IGM
- Constrain supermassive black hole formation models
- Properties of the host galaxies
 - coevolution?
 - AGN feedback?
- The environment of quasars

The search for the most distant quasars

Extremely rare objects:

- < 1 quasar per Gpc³ at z=6, or < 1 per 100 deg²
- Requirement: very large area, multi-colour surveys
- Challenge: find the quasars among the billions of sources

Progress in distant quasar searches

Constraints on early black hole growth

02/08/2018

Constraints on early black hole growth

Constraints on early black hole growth

02/08/2018

The host galaxies of distant quasars

 The galaxy hosting the accreting black hole:
→ detectable in the far-infrared (cold dust and atomic/molecular emission lines)

ALMA Cycle 3: quasar host survey

- Blind detection experiment, targeting all bright z > 6quasars visible from ALMA
- 8 min on source
- Data for 27/36 targets
- Combined with literature

.8 Durham-Dartmouth Extragalactic Workshop Are AGN special bram Ve

ALMA Cycle 3: quasar host survey

PJ007+0

- 80% detection rate in [CII]
- 100% in continuum

02/08/2018

Dust emission in high redshift quasar hosts

02/08/2018

 Large spread in FIR luminosity at a fixed quasar brightness

and

Large spread in quasar
brightness at fixed FIR 11
luminosity

AGN feedback at high redshift?

02/08/2018

ALMA Cycle 3: [C II] emitting companions

02/08/2018

 (\mathbf{A})

Companions: very dusty starburst galaxies

02/08/2018

Companion galaxies near distant quasars

Companion galaxies near distant quasars

Dynamical mass of the host galaxies

- measure line width and size
- assume [CII] rotating disk
 - → derive dynamical mass
 - masses of $10^{10}-10^{11}~M_{\odot}$

See, e.g., Wang+ 13, 16; Willott+ 13, 15, 17; BV+ 16; Izumi+ 18

Local black hole-bulge mass relation

02/08/2018

02/08/2018

Estimating the stellar mass

- Many assumption to compute dynamical mass
- Stellar mass depends also on gas mass fraction

Estimating the stellar mass

- Many assumption to compute dynamical mass
- Stellar mass depends also on gas mass fraction

Higher resolution imaging:

- e.g. Walter+ 04,09; Shao+ 17
- Rotating disk assumption valid

Host of *z*=7.1 quasar: no rotation!

02/08/2018

Host of *z*=7.1 quasar: no rotation!

Declination

02/08/2018

Summary

- Host galaxies of the most distant quasars show a wide range of properties
- A fraction of (but not all) quasars show nearby companions / merger signatures
- Most massive black holes are above local M-σ relation, but estimating stellar masses are difficult

