

THE WISSH SURVEY: REVEALING ULTRA-MASSIVE BLACK-HOLES & POWERFUL WINDS IN THE MOST LUMINOUS QUASARS

GIUSTINA VIETRI

Postdoc at Excellence Cluster Universe (Garching)

The WISSH quasars project

E. Piconcelli, F. Fiore, M. Bischetti, A. Bongiorno, F. Duras, V. Testa, A. Travascio, L. Zappacosta INAF OAR V. Mainieri, E. Sani ESO

- M. Brusa, C. Vignali UNIBO INAF OABO
- G. Cresci, A. Marconi INAF Arcetri
- ... and many others

AGN FEEDBACK AT ITS EXTREME

Looking for AGN feedback in action: where to observe?

The more luminous is the AGN the higher is the outflow momentum rate $M_{V}\sim 20-50L_{bol}/c$

e.g. Menci+08, Faucher-Giguère&Quataert 2012, Zubovas&King 2012,Cicone +14, Feruglio+ 15

The most luminous quasars are the best targets to hunt for powerful AGN-driven outflows

-> Sampling LARGE areas to collect the most luminous AGN

The Wide-field Infrared all sky Survey WISE (3.4, 4.6, 12 and 22µm) can be the answer...

THE WISSH QUASARS SURVEY

WISSH Quasars Sample of 86 WISE/SDSS Selected Hyper-luminous (WISSH) quasars

- SDSS DR7 broad-line Quasars at z >1.5 with WISE(22µm) > 3mJy
- L_{Bol} > 2 x 10⁴⁷ erg s⁻¹

WISSH Tasks

- Probing widespread presence of outflows from different gas phases/distances
- Constraining the properties of the central engine
- Studying the ISM and SFR of the quasars host galaxies

Extensive multi- λ observing program: panchromatic view of Hyper-Lum QSOs

Proprietary data: <u>LBT/LUCI, SINFONI, X-shooter, XMM & Chandra, ALMA, Noema</u> Public data: Herschel, WISE, 2MASS, <u>SDSS</u>

SMBH MASS FROM HB EMISSION LINE

LBT/LUCI campaign (36 targets): initial sample of 18 WISSH quasars

(Vietri et al. 2018, <u>arXiv 1802.03423</u>)

Opportunity of collecting high-mass, highly accreting SMBHs at the peak of the quasar number density

NIR SPECTRA OF THE WISSH QUASARS

- Very complex spectra
- Narrow [OIII] emission weak or absent in all of them
- If present, [OIII] shows broad blue-shifted profiles (in 6/18 quasars) indicative of outflows
- Strong, complex FeII emission

Bischetti, Piconcelli, Vietri + 2017, A&A, 598, A122

Bischetti, Piconcelli, Vietri + 2017, A&A, 598, A122

WISSH quasars allow to reveal extremely powerful outflows

Giustina Vietri

Are AGN special? Durham 2018

LACK OF [OIII] IN WISSH QUASARS?

Rest-frame wavelength (Å)

Are AGN special? Durham 2018

[OIII] DICHOTOMY

BLR winds traced by CIV(SDSS)-Hbeta(LBT) velocity shift

WISSH QSOs also very effective in collecting the strongest CIV winds

BLR(CIV) - NLR([0III]) WINDS DICHOTOMY

(Vietri et al. 2018, <u>arXiv 1802.03423</u>)

Discovery of a dichotomy: CIV vshift > 2000 km/s if weak/no [OIII] CIV vshift < 2000 km/s if [OIII]

(Vietri et al. 2018, <u>arXiv 1802.03423</u>)

Take into account for a complete census of strong AGN-driven outflows Evaluate their effects of depositing energy and momentum into the ISM

WHAT IS THE DRIVER OF BLR WINDS?

Sample of 147 QSOs with HB SMBH mass

As expected for radiatively driven winds Log V_{out} «0.25 Log L_{Bol}

WHAT IS THE DRIVER OF BLR WINDS?

Is the shape UV-X ionizing continuum the physical driver of the BLR winds?

Strong X-ray radiation can easily overionize the material and hamper an efficient line-driving mechanism

CENSUS OF AGN DRIVEN WINDS

Outflow velocity distribution as a proxy of the distribution in radial distance from the AGN Momentum load for nuclear winds may reflect the covering factor of outflowing gas

CONCLUSIONS

The WISSH sample

86 Hyper-luminous, Type 1 quasars with $L_{Bol} > 10^{47}$ erg/s at 1.5 <z< 4.5

WISSH: Revealing widespread presence of outflows in the most luminous quasars

Results from LUCI/LBT(Optical) - SDSS(UV) data (18 targets)

Ultramassive (up to $2 \times 10^{10} \text{ M}_{\odot}$) – Highly Accreting SMBH at z~3

POWERFUL MASSIVE KPC SCALE IONIZED WINDS

SINFONI IFU spectrocopy follow-up is on-going

DISCOVERY HIGH-VELOCITY (3000-8000 km/s) BLR WINDS

High luminosity as a key ingredient (70% of the WISSH) Radiatively driven BLR winds ($v_{\propto}L_{Bol}^{(1/4)}$) BLR winds as powerful as NLR winds

DICHOTOMY OF BLR(CIV) - KPC-SCALE [OIII] WINDS

CIV vshift > 2000 km/s if weak/no [OIII] CIV vshift < 2000 km/s if [OIII] Inclination likely play a major role

PHYSICAL DRIVER OF CIV WINDS

steep αox and large L_{Bol}