Evolution of Galaxy Stellar Mass Function since z~3

Masaru Kajisawa (Ehime University), MOIRCS Deep Survey team

Abstract

We present results on the evolution of the galaxy stellar mass function (SMF) at z~1-3 from MOIRCS Deep Survey, which is a deep NIR imaging survey with Subaru/MOIRCS in the GOODS-North region. The deep NIR data allow us to construct a nearly stellar mass-limited sample down to $\sim 10^{9.5}$ - $10^{10} M_{\odot}$ even at $z \sim 3$. We found that the low-mass slope of the SMF becomes steeper with redshift and that the evolution of the number density of $\sim M^*$ ($\sim 10^{11} M_{\odot}$) galaxies is stronger than low-mass (10^9 - $10^{10} M_{\odot}$) galaxies at z>1. We also found that the low-mass slope of the SMF for quiescent galaxies is significantly flatter than that of starforming galaxies at 0.5<z<2.5. The evolution of the number density of quiescent galaxies is stronger than star-forming ones, which causes the rapid increase of $\sim M^*$ galaxies relative to low-mass galaxies.

Stellar mass function at 0.5<z<3.5

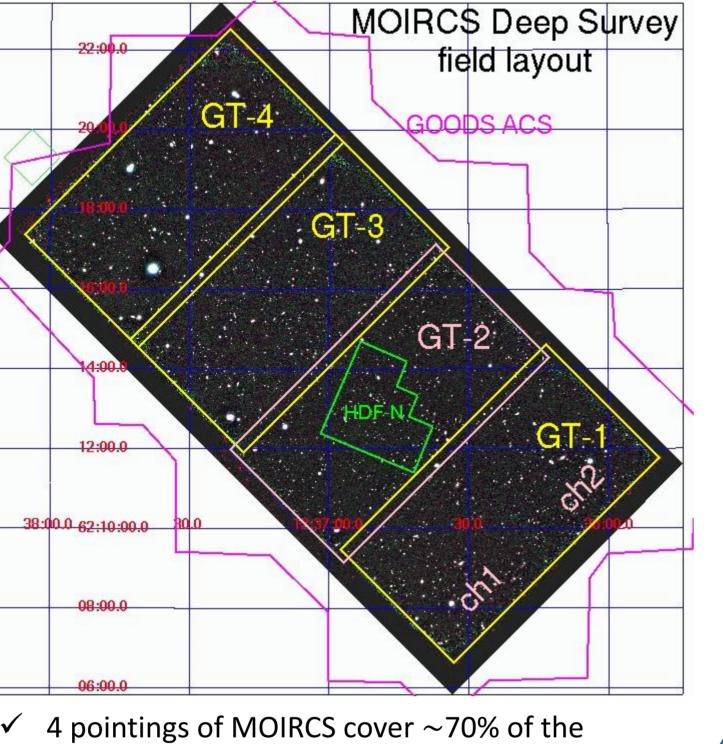
- ✓ Number density of galaxies over a wide range of stellar mass (normalization of the SMF) decreases with redshift.
- \checkmark The strength of the evolution depends on stellar mass. The number density of galaxies with $M_{star} \sim 10^{11} M_{\odot}$ evolves by more than an order of magnitude between $z\sim0.75$ and $z\sim3$, while galaxies with $M_{star} \sim 10^{10} M_{\odot}$ evolve by a factor of ~5.
- ✓ The characteristic mass M* shows no significant evolution.
- \checkmark There seems to be a upturn around $10^{10} M_{\odot}$ in the SMF.
 - The best-fit Schechter parameters
- 10-0.5<z<1.0 1.0<z<1.5 - •-1.5<z<2.5 -■-2.5<z<3.5 ----(dex) 10-2 sity 10^{-3} Numbei 10-4 z~0.1 ---

 10^{12}

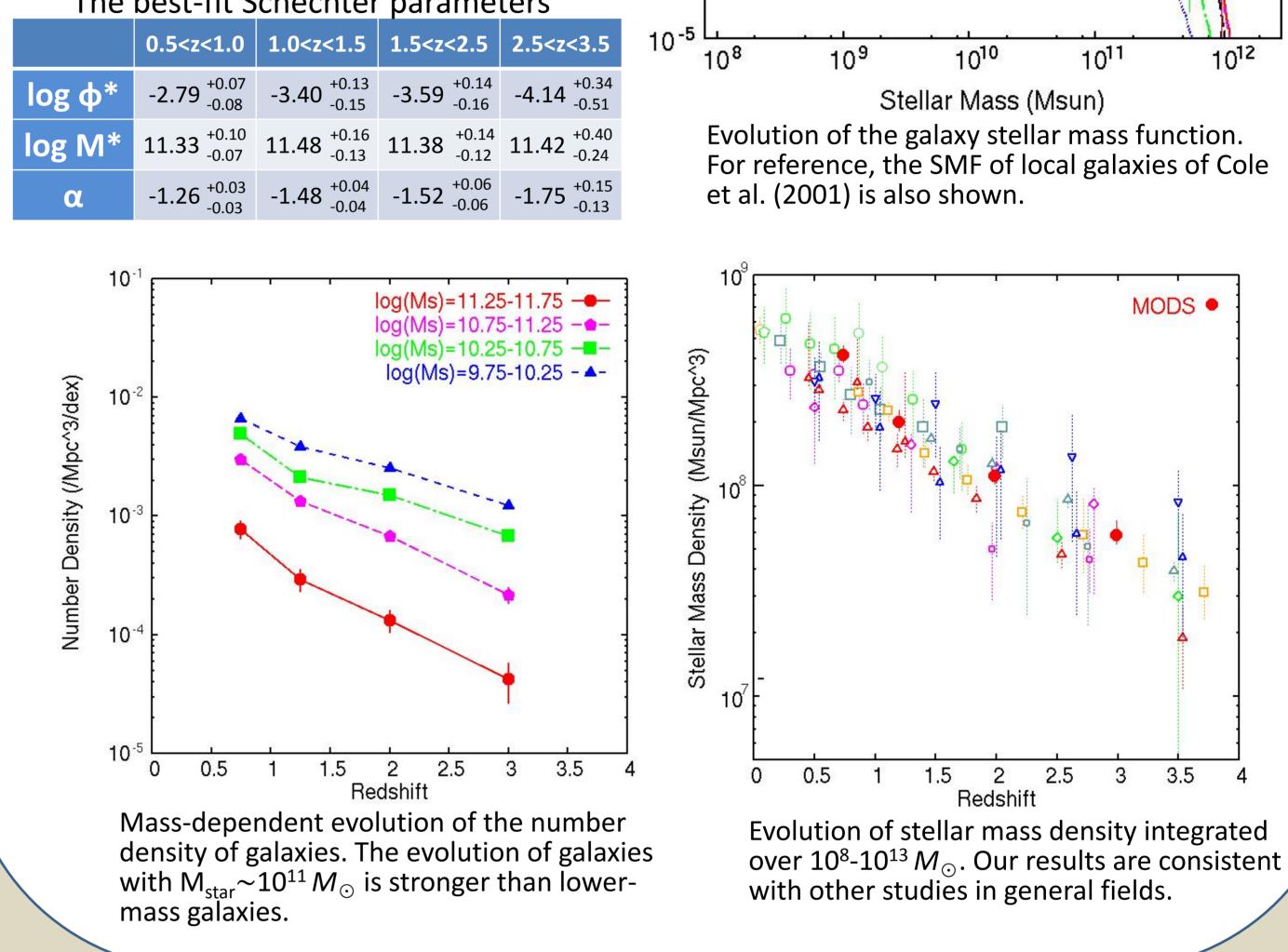
3.5 4

MOIRCS Deep Survey

Deep JHKs-bands imaging survey with Subaru/MOIRCS in GOODS-North


 \blacktriangleright Wide (GT-1,(2),3,4) ~103 arcmin²

band	5σ limit (AB)	exp. time (hour)
J	25.2	6.3-9.1
Н	24.5	2.5-4.3
Ks	25.0	8.3-10.7


 \blacktriangleright Deep (GT-2) ~28 arcmin²

band	5σ limit (AB)	exp. time (hour)
J	26.1	28.2
Н	25.3	5.7
Ks	25.9	28.0

Reduced images and catalogs are publicly available at http://www.astr.tohoku.ac.jp/MODS/

GOODS-N region.

Quiescent & star-forming populations

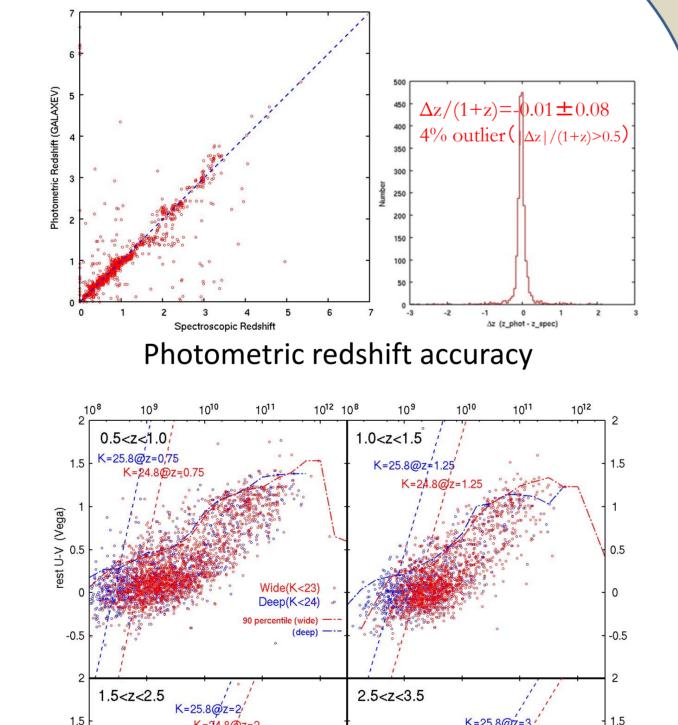
Sample selection & Analysis

◆ *Ks*-band selected sample

- *K*<24.8 in the wide field
- *K*<25.8 in the deep field \bullet

Multi-band photometry

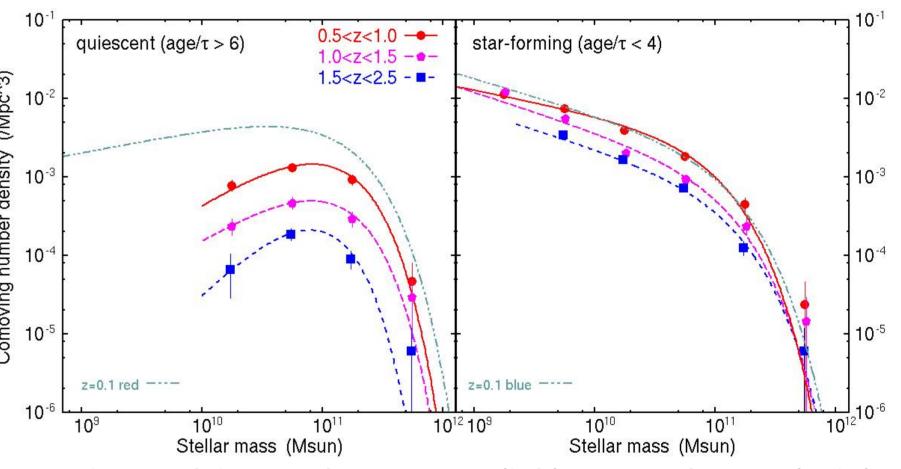
- KPNO/MOSAIC (U band)
- HST/ACS (*B*, *V*, *i*, *z* bands)
- Subaru/MOIRCS (*J*, *H*, *K* bands)
- Spitzer/IRAC (3.6, 4.5, 5.8 µm bands)

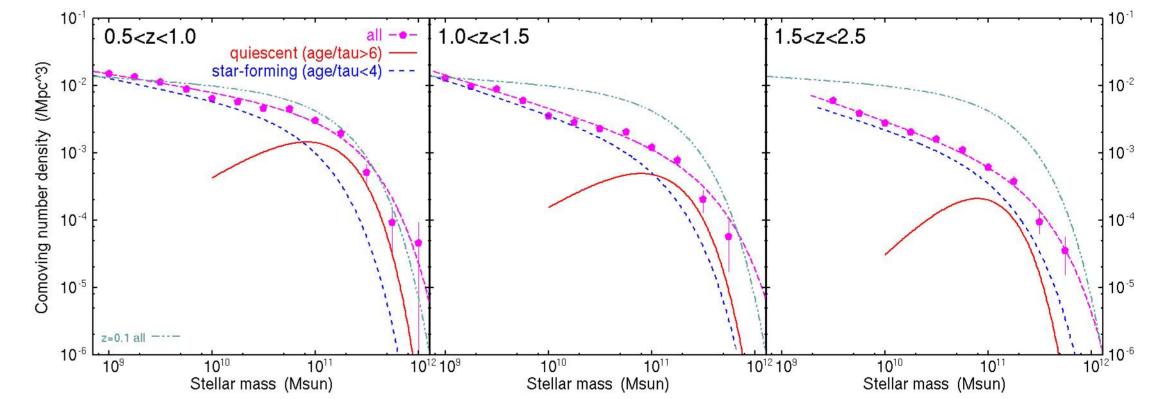

SED fitting analysis

- GALAXEV model (Bruzual & Charlot 2003) SFR $\propto exp(-age/\tau)$
 - Salpeter IMF
 - Calzetti extinction law
 - Photometric redshift
 - Stellar *M/L* ratio (\rightarrow stellar mass)
- Limiting stellar mass

K-band magnitude-limited sample

rest-frame U-V color M/L ratio distribution distribution at each-z as a function of mass

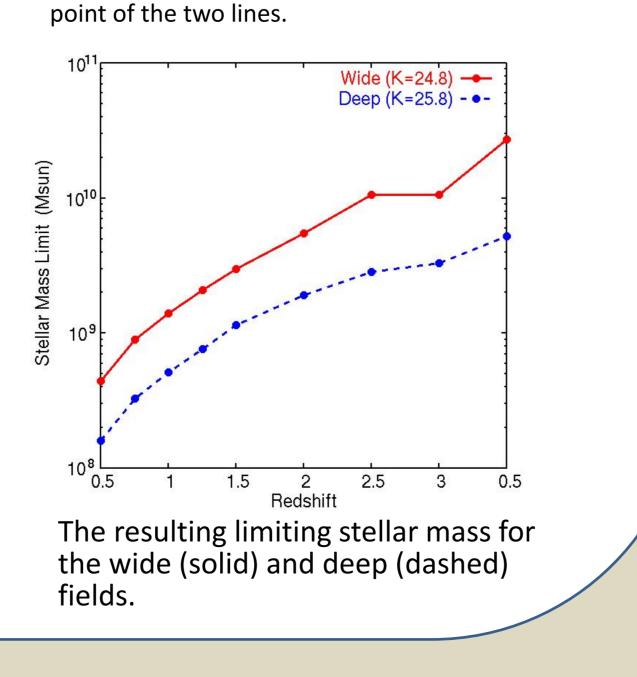

Stellar mass limit as a function of redshift


We divided the stellar mass-selected sample into quiescent and star-forming populations with the results of the SED fitting analysis.

\Box age/ $\tau > 6 \rightarrow$ quiescent \Box age/ $\tau < 4 \rightarrow$ star-forming

- ✓ The low-mass slope of the SMF for quiescent galaxies is flatter than that for star-forming ones at 0.5<z<2.5.
- \checkmark The strength of the number density evolution is different between the two populations. The number density for quiescent galaxies increases by a factor of ~10 from z~2 to z~0.75, while that for star-forming ones does by a factor of \sim 3.

Evolution of the SMF for quiescent (left) and star-forming (right) galaxies. The low-mass slope and the strength of the evolution are different between the quiescent and star-forming galaxies.



Contributions to the number density of galaxies from quiescent (long-dashed) and star-forming (short-dashed) populations as a function of stellar mass. The fraction of quiescent galaxies around $10^{11} M_{\odot}$ significantly increases from z~2 to z~0.75, while the quiescent fraction for lowmass galaxies remains small over the redshift range. The `dip' around $10^{10-10.5} M_{\odot}$ in the total SMF seems to be explained by the contribution of the quiescent population.

90% of galaxies with the limiting mass are detected at K<24.8 (K<25.8 for the deep field)

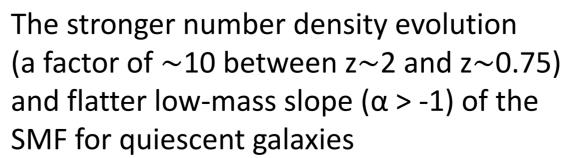
Size of the stellar mass-limited sample

	0.5 <z<1.0< th=""><th>1.0<z<1.5< th=""><th>1.5<z<2.5< th=""><th>2.5<z<3.5< th=""></z<3.5<></th></z<2.5<></th></z<1.5<></th></z<1.0<>	1.0 <z<1.5< th=""><th>1.5<z<2.5< th=""><th>2.5<z<3.5< th=""></z<3.5<></th></z<2.5<></th></z<1.5<>	1.5 <z<2.5< th=""><th>2.5<z<3.5< th=""></z<3.5<></th></z<2.5<>	2.5 <z<3.5< th=""></z<3.5<>	
wide	1592	1143	994	302	
deep*	83	85	101	63	
total	1675	1228	1095	365	
* objects with K=24.8-25.8 in the deep field only					

Rest U-V color vs. M_{star} . Dashed-dotted lines show

Dashed lines show maximum mass of galaxies with

The limiting stellar mass is determined as a crossing


the limiting *K*-band magnitude at each *U*-*V* color.

90 percentile of the U-V color at each mass.

Related papers

Kajisawa et al. 2009, ApJ, **702**, 1393 Kajisawa et al. 2011, PASJ, **63S**, 403

Kajisawa et al. 2010, ApJ, **723**, 129 Kajisawa et al. 2011, PASJ, **63S**, 379

If we assume that the increase of quiescent galaxies is caused by the cessation of star formation in some fraction of star-forming galaxies, a quenching of star formation is expected to occur preferentially in more massive galaxies at 0.5<z<2.5 in order to maintain the mass-dependence of the quiescent fraction.

As star-forming galaxies grow near to $\sim M^*$, star formation in these galaxies tends to cease.

Discussion

more rapid increase of $\sim M^*$ galaxies with $\sim 10^{11} M_{\odot}$ than lower-mass galaxies in the SMF.

Mass-dependent quenching rate

	$10^{1010.5}M_{\odot}$	$10^{10.5-11} M_{\odot}$	$10^{11-11.5}M_{\odot}$
1.5 <z<2.5< th=""><th>7%</th><th>18%</th><th>29%</th></z<2.5<>	7%	18%	29%
→1.0 <z<1.5< td=""><td>(4% Gyr⁻¹)</td><td>(11% Gyr⁻¹)</td><td>(18% Gyr⁻¹)</td></z<1.5<>	(4% Gyr⁻¹)	(11% Gyr ⁻¹)	(18% Gyr⁻¹)
1.0 <z<1.5< th=""><th>10%</th><th>23%</th><th>41%</th></z<1.5<>	10%	23%	41%
→0.5 <z<1.0< td=""><td>(4% Gyr⁻¹)</td><td>(10% Gyr⁻¹)</td><td>(18% Gyr⁻¹)</td></z<1.0<>	(4% Gyr⁻¹)	(10% Gyr ⁻¹)	(18% Gyr⁻¹)

The fraction of newly emerging quiescent galaxies between the redshift bins relative to the starforming population including newly increased galaxies at a given mass range.

Galaxies tend to accumulate around M* (if the stellar mass growth by mergers is not significant) The number density of $\sim M^*$ galaxies increases preferentially.