The Eris Simulation

The Basics

Javiera Guedes^{1,2}, Simone Callegari³, Piero Madau¹, & Lucio Mayer^{2,3} 1. UC Santa Cruz, 2. ETH Zurich, 3. University of Zurich

	M _{vir} [10 ¹² M _{sun}]	V _{sun} [km/s]	M* [10 ¹⁰ Msun]	$\mathbf{f}_{\mathbf{b}}$	B/D	R _d [kpc]	\mathbf{M}_i	SFR [M _{sun} yr ⁻¹]
Eris	0.79	206	3.9	0.12	0.35	2.5	-21.7	1.1
MW	1±0.2	221±18	4.9-5.5	?	0.33	2.3±0.6	?	0.68-1.45

* The highest-resolution cosmological simulation of the formation of a late-type spiral galaxy to date. *Sampled using the "zoom-in" technique, high resolution at the center, coarse dark matter distribution outside.

astro-ph/ 1103.6030

* Gasoline: N-body + SPH code that allows for a large dynamic range due to its Lagrangian nature.

* Eris contains a total of 18 M particles within the virial radius: 3 M in gas, 7 M in dark, 8.6 M in stars

* Physics: Star formation, heating by an UV background, SNe type Ia and type II feedback (blast-wave) and enrichment, cooling. No AGN.

* Eris was run on the the NASA Pleiades and Swiss National supercomputers consuming roughly 1.6 million cpu-hours (9 months including overhead) from z=90 to z=0.

HI disks observed in nearby face-on spirals extend further than the stellar disk have a distribution of holes with mean diameter ~ 1 kpc. Boomsma et al. 2008.

x kpc

Observations of the Kennicutt-Smith relation in nearby spirals shows that there is a strong correlation between molcular hidrogen surface density and star formation, and no correlation between Σ_{SFR} and Σ_{HI} . Although thre is no H2 physics in our simulations in fact we match the observed $\Sigma_{\rm SFR}$ - $\Sigma_{\rm HI}$ data.

NGC 6946

x [kpc]

Higher simulations of even higher resolution (in which the high densities of star-forming regions are resolved) are needed to match the molecular K-S relation.

(a) As the mayority of nearby spirals, Eris shows a downward surface profile break, so it would be classified as a Type II-CT (classical break). (b) The break radius r_b , the surface brightness at r_b , and the extrapolated inner surface brightness, all agree with observations. (c) Since the break in surface brigness is sharper than the break in surface stellar density, a possible explanation for these breaks is the changing properties of the stellar populations at r_b (e.g. Roskar et al. 2008). Indeed, the age of the stars dips at the position of the break. Observational data was taken from Pohlen & Trujillo 2006 and Bakos, Trujillo, & Pohlen 2008.

References

Broosma et al. 2008

Pohlen & Trujillo 2006

Bakos, Pohlen, & Trujillo 2008

The key to the formation of a massive, extended disk with a small classical bulge (B/D=0.35) is the threshold for star formation. Using a high threshold (HT) allows for the formation of an inhomogeneous ISM: feedback is more efficiently because it acts mostly on the highestdensity regions, and removes preferentially low-angular momentum materrial.

