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Introduction

Observed baryons account only for a small fraction of what the ACDM
model predicts.
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We 1mplement a stochastic star formation. At each time-srep, a gas par-
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Figure 1: Cooling functions from Maio and Sutherland and Dopita. Z=0 g [ » \ i . 3 B
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We take Ho cooling functions of Glover et al [1] that include collisions '_g' B ™ ] a
of H2 with H atoms, He atoms and Hy molecules, and HD cooling func- O C i 1 E ER=
tions from Lipovka et al [2] (HD 1s a more efficient coolant than Hy due I i T i
its dipolar moment). The LTE cooling functions were computed from - ""_10 55510

quantum data.

We implemented an implicit thermal evolution scheme in Gadget.

Discussion

Sb Galaxy Simulation

Galaxy model

We simulate an i1solated Sb galaxy with the following components:
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Figure 3: Boxes size is 20 kpc * 20 kpc. Snapshots are taken at 0.5 Gyr, 1 Gyr and 1.5 Gyr.

For all runs, we find the formation of two phases in the in-
terstellar medium, a diffuse and a dense phase, which are
of roughly comparable mass. Only in the cooling/without
feedback run there 1s a continuum density distribution, with
a peak in the denser possible phase. Particles pile up at the
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Conclusion and prospects

We see the implemented feedback and cooling give a Sb galaxy morphology similar to observations,
the interstellar medium being in two main phases: a dense and cold one, and a diffuse warm one.

Future work will involve higher resolution simulations with a model of the molecular hydrogen frac-
tion depending on density and the inclusion of dark baryons in the disc.
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Including feedback gives a blurrier appearance that 1s sim-
ilar in 1sothermal or with cooling runs.
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Figure 4: Temperature-density plane at t=1.5 Gyr

for the run with cooling and feedback.
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