

The First Stars and Black Holes

Nature of First Stars
Early black hole
formation scenarios

With: Matthew Turk, John Wise, Jeff Oishi, Ji-hoon Kim, Peng Wang, Marcelo Alvarez. Vis: Ralf Kaehler

Simulation: John Wise & Tom Abel 2011 Visualization: Ralf Kähler & Abel (KIPAC)

Tom Abel Kavli Institute for Particle Astrophysics and Cosmology SLAC National Accelerator Laboratory & Physics Department, Stanford University Institute for Theoretical Astrophysics and Heidelberg Institute of Theoretical Studies (HITS)

Gas Density

Microgalaxy

~10⁶ Mo

First cooling objects

If angular momentum transport is fast then Accretion Time -> Mass Scale of FS?

Tom Abel KIPAC/Stanford

~30 high res sims of different environments One out of five cases Binaries and even triple systems made in first collapse.

Complex accretion disks around the first proto-stars Turk, Norman & Abel 2010, ApJL

100 yrs ~ 0.1 % of relevant accretion time

Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between the Earth and the Sun.

Paul C. Clark,^{1*} Simon C.O. Glover,¹ Rowan J. Smith,¹ Thomas H. Greif,² Ralf S. Klessen,^{1,3} Volker Bromm⁴ 1000 yrs ~ 1 % of relevant accretion time. All the mass in most massive objects.

THOMAS H. GREIF¹, VOLKER SPRINGEL^{2,3}, SIMON D. M. WHITE¹, SIMON C. O. GLOVER⁴, PAUL C. CLARK⁴ ROWAN J. SMITH⁴, RALF S. KLESSEN⁴ & VOLKER BROMM⁵

After an initial burst, gravitational instability recurs periodically, forming additional protostars with masses ranging from \sim 0.1 to 10 M_sun. Although the shape, multiplicity, and normalization of the protostellar mass function depend on the details of the sink-particle algorithm, fragmentation into protostars with diverse masses occurs in all cases, confirming earlier reports of Population III stars forming in clusters. **Depending on the efficiency of later accretion and merging**, Population III stars may enter the main sequence in clusters and with much more diverse masses than are commonly assumed.

Recap

Formation of the first stars

 Many simulations with four very different numerical techniques and a large range of numerical resolutions have converged to this result. Some of these calculations capture over 20 orders of magnitude in density and reach the proto-stellar accretion phase! (AMR-ppm, AMR-zeus, AMR-Muscl, SPH, rpSPH, ALE-Arepo)

Non-equilibrium chemistry & cooling, three body H2 formation, chemical heating, H2 line transfer, collision induced emission and its transport, and sufficient resolution to capture chemo-thermal and gravitational instabilities. Stable results against variations on all so far test dark matter variations, as well as strong soft UV backgrounds.

- Will this continue to hold at higher resolutions?
- Pop III stars are very massive > 30 solar mass but less than 300
- Disk fragmentation possible. Most fragments merge very rapidly due to the enormous gas drag and loss of angular momentum. Do a few have a chance to survive? Binary fraction could be large.

cosmological: Abel 1995; Abel, Zhang, Anninos & Norman1998; Abel, Bryan & Norman 2000, 2002; O'Shea et al 2006; Yoshida et al 2006; Gao et al 2006, O'Shea & Norman 2007, Yoshida et al 2009; Turk, Abel & O'Shea 2009, Science. With re-griding: Greif et al 2011; Clark et al 2011 idealized spheres: Bodenheimer 1986; Haiman et al 1997; Omukai & Nishi 1998; Bromm et al 1999,2000,2002; Ripamonti & Abel 2004;

B-field amplification during the formation of the first stars

Enzo/MHD

Viscosity of fluid and small scale dissipation modified

Schleicher, Federrath, Sur, Banerjee, Klessen 2010, 2011 $^{\text{Density}}$ (g/cm³)

One billion resolution elements afforded by the hard and software improvements.

A critical Reynolds number at which our results change qualitatively?

Temperature

~kpc

~200 pc

Simulation: John Wise & Tom Abel Visualization: Ralf Kähler, Wise & Abel

Custom GPU based volume renderer for adaptive grids by Ralf Kähler, John Wise & Tom Abel

First Black Holes

Accessible to direct simulations in hydrodynamic and MHD limits **Dynamic range > 1e10** subgrid modeling

GAS

star

formation

An old subject which modern simulations are poised to make substantial progress on.

Accessible to direct simulations in **N-body limit** > 1e6 particles

coalescence > 2100 M STARS CLOUD 'new stars' supernovae form contraction collisional disruption of stars CLUSTER OF NEUTRON STARS OR STELLAR-MASS **BLACK HOLES** SUPERMASSIVE STAR one black hole grows spectacularly collapse and/or by accretion accretion nuclear explosion bar-mode instability SYSTEM OF post-Newtonian FEW BODIES instability ≥3 MASSIVE **BLACK-HOLE** contraction catalyzed by gas in system that radiates binding energy BINARY BLACK HOLES slingshot RELATIVISTIC ejection CLUSTER spiral together via gravitational relativistic instability or gravitational radiation radiation **Numerical Relativity**

DENSE STAR

CLUSTER OF

N-body

evolution

TIGHTLY-

BOUND

stellar

massive black hole

Martin Rees 1980

Do the first black holes grow rapidly?

Insignificant BH accretion - no mini quasars because of internal photoevaporation, nor pre-cursors of Quasars, large local feedback.

Yes! But how about the small seeds falling into rapidly growing galaxies. Surely they must grow then, isn't it?

- Same initial conditions as "Simulation B" of Wise et al (2008abcd...)
- 1.5 Mpc periodic box
- 1024³ effective resoltution
- 0.3 pc resolution
- H₂ chemistry, pop III and pop II star formation, full radiative transfer,
- First star forms at z~30
- lonizing radiation from 100 M_{\odot} stars coupled to hydro
- Remnant black hole accretion and radiative feedback treated including secondary ionization *Alvarez, Wise & Abel (2009)*

z=8.2 still no further growth. Halo: 2×10^8 solar mass 3 solar masses total on 25 black holes

Black holes spend almost all their time in the wrong places

1e-22

Density (g/cm³)

1e-23

Most Pop III stellar seed black holes do not grow.

- Only need to make one bright high-z quasar per comoving Gpc. So only one of hundreds of thousands potential pop III remnant black holes has to experience runaway growth.
 - Why that one?
 - How does kpc scale gas know to keep being available for accretion onto it?

Wise, Alvarez, Abel in prep.

SMBH from direct gaseous collapse?

- Perhaps some halos with 10⁴K can have central cores that collapse directly? (e.g. Koushiappas et al. 2004; Volonteri & Rees 2005; Begelman et al 2006; Spaans & Silk 2006; Lodato & Natarajan 2006; Wise & Abel 2007; Regan & Haehnelt 2008)
- Numerical experiment
 - Assume no molecules can be formed (actually very bad assumption ... see John Wise' talk this afternoon)
 - Only H, He cooling leads to the first cooling objects to be ~ 1e8 solar masses which have a central 1e5 solar mass cloud contract fast.
 - See it as a numerical experiment to study the collapse of a turbulent isothermal cloud formed form cosmological initial conditions
 - Interesting also as a model to start studying the role of turbulence in galaxy formation
 - Dynamic range of 10¹⁵ which is by far the highest resolution simulation carried out. Beat our own record by 5 order of magnitude ...

Wise, Turk & Abel 2008, ApJ

Bars within Bars (and disks) are misaligned

- Turbulent viscosity sufficient.
- Angular momentum may be transported quickly.
- Is this scenario realized when halo forms next to a bright source? (Shang, Bryan & Haiman 2010)
 - Lyman Werner band H₂ dissociation so strong that during collapse no molecules can form
 - Need to have such a high flux for the entire time the progenitors grow from 10⁵ to 10⁸ solar mass.

Summary

- First star formation simulations study now not only proto-stars but also binaries and multiples formed prior to and after the appearance of accretion disks.
- B-fields are amplified from the start. Relevant on small scales quickly. Viscous scale, Reynolds number and small scale dissipation are affected first.
- Radiation and supernovae feedback severe for early small galaxies.
- Early black holes barely grow.
- Key in evaluating whether the direct collapse scenario is viable will be to simultaneously and believably model star formation.

