

A new look at galaxy scaling relations

Michele Cappellari

Why one more study?

Galaxy luminosity, size and velocity are related

- FJ ($L \sigma$): Faber+Jackson76 (for ellipticals)
- TF $(L V_c)$: Tully+Fisher77 (for spirals)
- KR ($L R_e$): Kormendy77
- FP: Djorgovski+Davis87; Dressler+87; Faber+87
- Samples of 10⁴ galaxies (Bernardi+03, Springob+)
- Our novelty are 260 accurate (enclosed) masses
- Only comparable effort with lensing (SLACS)
 - Smaller sample + complex selection (Bolton+06,08)
 - Lower quality stellar kinematics and population

10% of our models: $\sqrt{V^2 + \sigma^2}$

Use Multi-Gaussian Expansion (Emsellem+94)
Jeans Anisotropic MGE solution (Cappellari+08)

Robustness of M/L determination

- M/L robust to assumed DM profile
- No bias in M/L with/without DM (see also Williams+10)
- Implied errors 7%
 Lablanche+ test with
 N-body simulations

 $(M/L)(R_e) = \frac{L(R_e) \times (M/L)_{\star} + M_{\text{DN}}}{L(R_e)}$

From FP to Mass Plane

Use mass instead of light

- Much decreased scatter
- Plane close to virial prediction (as Cappellari+06, Bolton+08)
- Edge-on view becomes not interesting
- Galaxy formation encoded in face-on view

Face-on view of Mass Plane

Galaxies occupy limited area of plane (Bender+92; Burstein+97)

- Sharp double power-law boundary
- Cusp @characteristic mass $M \approx 3 \times 10^{10} M_{\odot}$ (cfr. Kauffmann+03)
- Minimum radius and maximum density for ETGs

Mass Plane projections

- All projections are equivalent
- Unique mapping
 of (M,σ,R_e)
- Both M-R_e and M-σ (mass FJ) "relations" are cusped
- Just envelopes of distribution

Some meaningful projections of the MP

Fundamental "Plane" not a plane!

• $\frac{M}{L} \parallel \sigma$ if $\sigma \gtrsim 120$ km/s • $\frac{M}{L} \perp \sigma$ if $\sigma \lesssim 120$ km/s

Dynamical M/L traces population

$(M/L)_{JAM}$

Ηβ

Dynamical M/L follows estimator of (M/L)_{pop}

• σ (not Σ or M) is best predictor of galaxy prop.

Main effect is an age variation (McDermid+)

Continuity spirals—ETGs (Cappellari+11b, P7)

Spirals essential to understand picture

 Bulge growth + quenching (cfr. VanderWel+09, Shankar+Bernardi09, Valentinuzzi+10)

Conclusions

- Light \rightarrow Mass = Mass Plane
- Due to virial equilibrium
- Galaxy formation encoded in face-on view
- Sharp cusped boundary
- M/L and population trends
- Explain σ best predictor
- Imply bulge growth + quench
 - Distinct route for high-z ETGs?
 - Or high-z disks (vanderWel+11) evolve into fast rotator ETGs?

Projection of Mass Plane (Cappellari+ TBS)