Secular Evolution of Galaxies

Outline:→ Disk size evolution

 \rightarrow Bar fraction vs mass & color

→ AM transfers, radial migrations

→ Bulges, thick disks

Françoise Combes Durham, 19 July 2011

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Two modes to assemble and redistribute mass → according to epochs and environment

Secular evolution

Internal slow evolution Through bars, spirals, +gas accretion

Hierarchical scenario

Spheroids form through major spiral mergers

Gas accretion can then reform disks

Disk evolution & Angular Momentum

In mergers: AM lost on DM: very small disks

Bars and spirals re-distribute AM Effective kinematic viscosity (Lin & Pringle 1987) Unstable scales $L_J < L < L_{crit}$ Jeans length and scale of shear

When instabilities occur, they transfer momentum on scale L_{crit} with time scale Ω^{-1} . \rightarrow a prescription for effective viscosity $\nu \sim L_{crit}^{2}/\Omega^{-1} \sim Q^{-2} H_{r}^{2} \Omega$

If $t_v \sim t_*$, exponential disk

Surface density evolution

Surface density of disks do not vary, while they were 10 times brighter in the last 8 Gyr \rightarrow passive evolution

Size evolution with redshift

- NFW all disks
- NFW stable disks

Sommerville et al 2008

Stellar radii at a given mass are \sim half lower, at z=2-3

DM radii are in $(1+z)^{-1}$ rs = cst, *Bullock et al 2001*⁵

Size evolution with redshift (2)

102 SF galaxies at z=1.5-3, about half the radius of local galaxies Nagy et al 2011, z=2-3 Weinzirl et al 2011

Disk Stability & Bar Fraction

Bulges and bars are more frequent for redder and bulge-dominated galaxies (Masters et al 2011, Galaxy Zoo)

Low-mass galaxy disks are thicker0.20.40.60.8Gas layer is thin, for Vc > 120 km/s(g-r)(g-r)(g-r)(g-r)(g-r)And thick for Vc< 120km/s</td>(Dalcanton et al 2004)There is a sudden drop, due to the stability criteriumHalf of the bar fraction at z~1 (Sheth et al 2008, COSMOS)7

Bar fraction & mass/color

Bar fraction depends on mass (Nair & Abraham 2010) Bimodality linked to the blue and red sequence

On a given path from the blue cloud, a barred galaxy loses its bar and regain it, when passing to the red sequence

Bars formation and destruction

Self-regulated cycle:

→Bar produces gas inflow, and
→Gas inflow destroys the bar

2% of gas infall is enough to transform a bar in a lens (Friedli 1994, Berentzen et al 1998, Bournaud & Combes 02, 04)

Cold gas inflow in filaments

Rate of gas accretion sufficient to maintain bars: Mass doubling in 7 Gyrs

Keres et al 2005, Dekel & Birnboim 2006, Ceverino et al 2010

Inside out disk formation

TreeSPH simulation of collapse, with gas accretion: gas break and Toomre Q increase: SF at the break

Radial migrations of stars and gas

12

∆L exchange without heating

The orbits which are almost circular will be preferentially scattered

Effect of coupled patterns

Time evolution of the L transfer with bar and 4-arm spiral, in the MW

Top: spiral CR at the Sun

Bottom: near 4:1 ILR

Minchev et al 2010

Bar+spiral migrations

Overlap of resonances

¹⁵ Minchev et al 2010

Scenarios of bulge formation

Mergers:

Major mergers form generally a spheroid

In minor mergers, disks are more easily kept and enrich the classical bulge

Secular evolution:

bars and vertical resonance elevate stars in the center into a pseudo-bulge: intermediate between a spheroid and a disk More frequent for late-type galaxies

Clumpy galaxies at high z can also form a bulge, through dynamical friction

→ Problems to form bulgeless galaxies

Pseudobulges have characteristics intermediate between a classical bulge (or Elliptical) and normal disks *(Kormendy & Kennicutt 2004)*

Sersic index $\mu \sim r^{1/n}$, with n =1-2 (disks: n=1, E: n=4 or larger)

 \rightarrow Flattening similar to disks, box/peanut shapes \rightarrow Bluer colors

→Kinematics: more rotation support than classical bulges

Multiple minor mergers

The issue is not the mass ratio of individual mergers But the total mass accreted If 30-40% of initial mass → Formation of an elliptical

50 mergers of 50:1 mass ratio

Even more frequent Than 1:1

Formation in clumpy galaxies

Rapid formation of exponential disk and bulge, through dynamical friction *Noguchi 1999, Bournaud et al 2007*

Chain galaxies, when edge-on

Evolution slightly quicker than with spirals/bars?

Frequency of bulge-less galaxies

Locally, about 2/3 or the bright spirals are bulgeless, or low-bulge Kormendy & Fisher 2008, Weinzirl et al 2009 Some of the rest have both a classical bulge and a pseudo-bulge Plus nuclear clusters (*Böker et al 2002*)

Frequency of edge-on superthin galaxies *(Kautsch et al 2006)* **1/3 of galaxies are completely bulgeless**

SDSS sample : 20% of bright spirals are bulgeless until z=0.03 (Barazza et al 2008) Disk-dominated galaxies are more barred than bulge-dominated ones

How can this be reconciled with the hierarchical scenario?

Low Bulge Mass in spiral galaxies

Weinzirl et al 2009

Milky Way: No possible classical bulge

Even a classical bulge of 8% Mdisk worsens the fit to the data

Older, low Fe/H stars have been scattered at high z, for a longer time Several bars? Shen et al 2010^{22}

NGC 4565: SBb, No classical bulge

In addition to the bar, a pseudo-bulge of 6% in mass

Pseudo, since flattened, and Sersic index 1.3-1.5

HST 1.6µm

Kormendy & Barentine 2010

Disk Heating

\rightarrow Rapid, due to mergers

 \rightarrow Slow due to secular evolution

Presence of thin and thick disks as two independent components Thick disks could be due to mergers and/or turbulent ISM at high z

House et al 2011

Too hot in simulations High σ floor Due to low ρ threshold

Disk Heating

Presence of the old thin disk \rightarrow problem for the hierarchical scenario

Thick disk formation

At least 4 scenarios:

1) Accretion and disruption of satellites (like in the stellar halo)

- 2) Disk heating due to minor merger
- 3) Radial migration, via resonant scattering
- 4) In-situ formation from thick gas disk (mergers, or clumpy galaxies)

CONCLUSION

➔ Importance of mergers: more frequent in Early-type Galaxies (ETG) However, 86% Fast rotators, 14% Slow rotators (Emsellem et al 2011)

→ Bars efficient to AM exchange, gas radial flows

→ Radial migration, resonant scattering by spirals, large disks

→Bulge formation: partly mergers But also vertical resonance with bars, secular evolution Or clumpy galaxies at high-z

→ Thick disk formation: mergers, or secular evolution?