# "Quasar" Feedback in Galaxies

### **Philip Hopkins**

Lars Hernquist, Norm Murray, Eliot Quataert, Todd Thompson, Dusan Keres, Chris Hayward, Stijn Wuyts, Kevin Bundy, Desika Narayanan, Ryan Hickox, Rachel Somerville, & more Every massive galaxy hosts a supermassive black hole



Mass accreted in ~couple bright quasar phase(s) (Soltan, Salucci+, Tremaine+, Yu & Lu, PFH, Shankar, et al.)



What can AGN Feedback Do For You?



# "Transition" vs.

- "Quasar" mode (high mdot)
- Move mass from Blue to Red?
- Rapid (~10<sup>7</sup> yr)
- Small(er) scales (~pc-kpc)
- Morphological Transformation
- Gas-rich/Dissipational Mergers?



Regulates Black Hole Mass

"Maintenance"

- "Radio" mode (low mdot)
- Keep it Red
- Long-lived (~Hubble time)
- Large (~halo) scales
- Subtle morphological change
- Hot Halos & Dry Mergers



Regulates Galaxy Mass



Sanders, Scoville, many subsequent

# What Can Quasar Feedback Do?

Feedback Energy: SILK & REES '98

$$\begin{split} L &= \epsilon_r \, \dot{M}_{\rm BH} \, c^2 \quad (\epsilon_r \sim 0.1) \\ &\rightarrow E_{\rm rad} \sim 0.1 \, M_{\rm BH} \, c^2 \sim 10^{61} \, {\rm erg} \\ &\qquad (M_{\rm BH} \sim 10^8 \, M_{\odot}) \end{split}$$

$$E_{\rm gal} \sim M_{\rm gal} \, \sigma^2 \sim (10^{11} \, M_{\odot}) \, (200 \, \rm km/s)^2 \sim 10^{59} \, \rm erg$$











### Expulsion of Gas Turns off Star Formation ENSURES ELLIPTICALS ARE SUFFICIENTLY "RED & DEAD"?



# But Does Quasar Mode Feedback Exist?





NGC 5728



### **Broad Absorption Line Quasars**

- Preferentially in high-L quasars
- Covering factor ~20%

~12 (16) objects now, 10/12 confirmed:

> $\dot{M}_{\text{wind}} v \gtrsim L_{\text{AGN}}/c$  $L_{\text{wind}} \gtrsim 0.01 L_{\text{AGN}}$



$$R_{\rm wind} \sim 1 - 20 \,\rm kpc$$
  
 $v \gtrsim 1000 \,\rm km \, s^{-1}$   
 $\dot{M}_{\rm wind} \sim 100 - 600 \,M_{\odot} \,\rm yr^{-1}$ 

Arav et al. Wampler et al. 1995 Hamann et al. 2001 de Kool et al. 2001&2 Korista et al. 2008 Moe et al. 2009 Dunn et al. 2010 Aoki et al. 2011 Kaastra et al. 2011

#### "Broad wings in Narrow Lines" in Type-2 (Narrow-Line) Quasars



### Ionized Gas Tracers At High-Redshift



### Molecular Outflows in AGN ULIRGs

Rupke & Veilleux 2005,2011 Fischer et al. 2010 (Mrk 231) Feruglio et al. 2010 (Mrk 231) Alatalo et al. 2011 (NGC 1266)

Molecular+Ionized Outflows:





### Molecular Outflows in AGN ULIRGs

Sturm et al. 2011:



# Where to now? How Do We Model This?

### Step 1: Inflow



6 8 10 - 12 -1 (Myt) - 10 - 12 -

2.5

500 pc

14

(PFH & Quataert 2010)



Bars w/in Bars (Shlosman et al. 1989)

# "It's Bars all the Way Down ..."

More accurately ...

# "It's Non-axisymmetric Features all the Way Down ..."

Step 2: Stellar Feedback & the ISM

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n<sub>H</sub>>1000 cm<sup>-3</sup>)
- Heating:
  - SNe (II & Ia)
  - Stellar Winds
  - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
  - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds  $\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$ 







Do we still need 'Quasar Mode' Feedback?



SFR [M<sub>®</sub>/yr]

Step 3: Physical Sources of AGN Feedback

# mechanical (jets & winds) & radiative

### Jets

heat IGM/ICM (low  $\rho),$  but not dense ISM

# Winds

BAL-QSO winds equatorial P up to ~ 5L/c (Arav+)

### Photons

UV:  $\dot{P} \sim L/c$  (absorbed by dust):  $K_{UV} \sim 10^3 \text{ cm}^2 \text{ g}^{-1} \sim 10^3 \text{ e scatt}$ FIR:  $\dot{P} \sim \tau L/c$  ( $\tau \sim$  dust FIR optical depth ~ 10-100):  $K_{FIR} \sim 10 \text{ e scatt}$ Compton Heating (only low density gas)

### Outstanding Problem: Which Dominates? Physics very difft for ISM & IGM

### BAL Winds as a Quasar Feedback Mechanism

- L/L<sub>Edd</sub> >~ 0.1
- Covering factor ~10-30%

~12 (16) objects now, 10/12 confirmed:

> $M_{\rm wind} v \gtrsim L_{\rm AGN}/c$  $L_{\rm wind} \gtrsim 0.01 L_{\rm AGN}$

Launched at < pc</p>

 $\dot{M}_{\rm launch} \sim \dot{M}_{\rm BH}$  $v_{\rm launch} \sim 30,000 \, {\rm km/s}$ 

#### Proga et al. 00-07; Kurosawa et al. 08-11



### BAL Winds on ~1pc - 1kpc scales:

# No BAL Winds With BAL Winds 0 Myr Gas 0 Myr Gas 10 pc 10 pc

 $\dot{M}_{\rm launch}(0.1\,{\rm pc}) = 0.5\,\dot{M}_{\rm BH}$  $v_{\rm launch}(0.1\,{\rm pc}) = 10,000\,{\rm km/s}$  BAL Winds as a Quasar Feedback Mechanism SILK & REES 1998, MURRAY ET AL. 2005, MANY MORE

Momentum Flux:

$$\frac{L}{c} \gtrsim F_{\rm grav} \sim \frac{G M M_g}{r^2}$$



Shut Down Accretion When:

$$L_{\rm max} \propto M_{\rm BH} \propto \sigma^4$$

if momentum flux ~ few L/c, predicts normalization of M- $\sigma$ 

$$M_{\rm BH} \sim 10^8 \, M_{\odot} \left(\frac{\sigma}{200 \, \rm km/s}\right)^4$$

#### **BAL** Winds on Galactic Scales CAN IT REALLY AFFECT STAR FORMATION?

## Novak et al. 2010,11 $10^3$ $10^2$ Normalization ~ (efficiency)<sup>-1</sup> $\dot{M}_*$ $10^1$

 $\dot{M} [M_{\odot} \text{ yr}^{-1}]$ 

Launch ~1000 km/s "tail" in winds

Recover M- $\sigma$ 

Suppress SFR





Gas



# **Summary**

- Quasar feedback is here to stay
  - BAL Winds + Jets + Radiation Pressure on Dust + ??? = ???
- > Strong arguments that this regulates BH Mass: Sets  $M_{BH}$ - $\sigma$ 
  - Less clear how it impacts the galaxy
  - BUT, depletion times ~1 Myr are hard to ignore!
- Inflows: "Stuff within Stuff": Cascade of instabilities with diverse morphology
  - Nuclear starbursts & powering of SMGs & ULIRGs
  - Determines structure & kinematics of elliptical galaxies
- > Outflows: Towards a *Predictive* Model
  - BAL Winds:
    - *CAN* explain  $M_{BH}$ - $\sigma$
    - WILL suppress SFRs
    - *SHOULD* heat & clear IGM & Proto-Group Environments
  - (Quasar) Jets:
    - WHEN PRESENT, probably even stronger effects
    - *Probably* jet-driven winds, not "direct" jet heating

