#### Insights on the Andromeda satellite system: a deep view of the faintest of galaxies and what they can tell us about their host

Nicolas Martin (MPIA, Heidelberg)
 PAndAS collaboration (PI: Alan McConnachie)
 Crystal Brasseur, Hans-Walter Rix, Andrea Macciò, Xi Kang

Thursday, July 21, 2011

#### Insights on the Andromeda satellite system: a deep view of the faintest of galaxies and what they can tell us about their host

Nicolas Martin (MPIA, Heidelberg)
PAndAS collaboration (PI: Alan McConnachie)
Crystal Brasseur, Hans-Walter Rix, Andrea Macciò, Xi Kang

Thursday, July 21, 2011

## The PAndAS view of Andromeda

streams & dwarf galaxies

## PAndAS

The Pan-Andromeda Archaeological Survey (2008–2011)

- Building on pilot M31 CFHT survey (Ibata, Martin et al. 2007)
- PI: Alan McConnachie (HIA, Victoria)
- CFHT large program
  - 220 hours over 3 years
  - 4m telescope on Mauna Kea
- MegaCam/MegaPrime
  - I deg<sup>2</sup> field of view
  - 2 bands (g & i)



# PAndAS

The Pan-Andromeda Archaeological Survey (2008–2011)

- Building on pilot M31 CFHT survey (Ibata, Martin et al. 2007)
- PI: Alan McConnachie (HIA, Victoria)
- CFHT large program
  - 220 hours over 3 years
  - 4m telescope on Mauna Kea
- MegaCam/MegaPrime
  - I deg<sup>2</sup> field of view
  - 2 bands (g & i)



# Andromeda



## Andromeda





#### PAndAS data

- Observing 3 mag. below the tip of RGB
  - 0.5-0.8" seeing
  - ~20 min integration in g & i
  - S/N=10 depths
    - g = 26.5
    - *i* = 25.5
- 3x10<sup>6</sup> stars in the M31 selection box



Thursday, July 21, 2011





A

Martin et al. (2006) Ibata, Martin et al. (2007) McConnachie et al. (2008) Martin et al. (2009) <u>Richardson</u> et al. (2011)

 $[Fe/H] \sim -1.7$ 

6 dSphs (2004) → 25 dSphs (now; 2 SDSS + 15 PAndAS) + deep follow-up

000

 $\bigcirc$ 

 $\bigcirc$ 

150 kpc

 $oldsymbol{O}$ 

.0

 $\bigcirc$ 

 $\odot$ 

 $\overline{\phantom{0}}$ 

 $\odot$ 

 $\bigcirc$ 

 $\odot$ 

 $\bigcirc$ 

 $\bigcirc$ 

# What sets the size of faint galaxies?

Brasseur, Martin, Rix, Macciò & Kang (ApJ, submitted) ArXiv:1106.5500

# A MW/M31 satellite discrepancy?

- M31 dSph appear larger at given luminosity (McConnachie & Irwin 2006)
   Different formation?
  - Consequence of different DM halo mass?
     no impact on r<sub>h</sub>-M<sub>V</sub>
  - Consequence of different formation time?

#### no impact on $r_h$ - $M_V$

• Consequence of M31's disk being more massive, tides? (Peñarrubia et al. 2010)



#### The size of faint galaxies

Brasseur, Martin et al. (2011)



#### No global difference in the size of MW/M31 satellites



• When accounting for:

- <u>dSph</u> detection limits (PAndAS + SDSS)
- uncertainties
- sampling

Size-luminosity relations of Milky Way and M31 dSphs are similar!

#### The Local Group dSph size-luminosity relation



#### The Local Group dSph size-luminosity relation



## A common size determinant?

• Shen et al. 2003: size of late-type galaxies explained by angular



Strongly suggests that angular momentum arguments and cosmological framework play a role in setting the size of dSphs

Thursday, July 21, 2011

#### Summary

PAndAS

- galaxy formation in action
- exceptional view of a satellite system:
   6 → 25 dSphs
- The size of faint galaxies
  - no difference between M31/MW satellite size-luminosity relations
  - good agreement with more massive late-type → angular momentum arguments explanation?
  - evidence of rotation? thrashed small disk galaxies?



