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(Goals

e Kennicutt’s Conference Introduction: Understanding of BH fueling and
feedback are in an embryonic state.

e Implement a physically rich AGN feedback model
e Ensure that physically relevant length and timescales are resolved

e How does BH accretion affect energy, mass, and momentum balance of
galactic gas?
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Basic Picture

e Early-Type Galaxy with initial population of stars, no gas
e Gas supplied by evolving stars, cools unstably, falls to center of galaxy

e Simulation domain 2.5 pc to 250 kpc, run for 10 Gyr



Length and Timescales

e Bondi radius of HOT gas: ~5 pc

e Sphere of influence of the black hole: ~20 pc

e Accretion disk timescales: ~10% yr

e Stellar evolution timescales (source of infalling gas): ~10° yr
e Galactic Length Scales: ~kpc

e Smallest cells: 0.2 pc

e Courant time in smallest cells: ~1 yr



The need for high resolution

e Bondi Radius depends strongly on sound speed Rp =

1
e Radiative AGN Heating depends strongly onradius H x —

Ir.2

e Sufficiently strong heating can cause the Bondi radius to “overtake” the gas

e Gas inside the Bondi radius corresponding to the Compton temperature is
energetically required to interact with the BH.

e The simulation should resolve the Bondi radius for gas at the Compton
temperature



Physically Rich Feedback Model

e Radiative and Mechanical Feedback via Energy and Momentum

e Mechanical Feedback via 10,000 km/s Wind driven off of (sub-resolution)
Accretion Disk

e Radiative Transfer of AGN and Stellar Photons due to Dust Opacity
e Dust Destruction via Sputtering, Creation via Stellar Winds, Molecular Clouds

e Compton Scattering/Heating, Photoionization Heating/Opacity, Atomic
Cooling, Bremstr.

e Star Formation, Supernovae
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—ffect of Changing Inner Radius

Cumulative Eddington Ratio Distribution
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—ffect of Changing Inner Radius

Cumulative Time Above

Cumulative Eddington Ratio Distribution
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—ddington Rate in Point Mass + SIS potential
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—ffect of Changing Inner Radius

e |f BH sphere of influence is unresolved, Eddington ratio will be too high

¢ | arge Eddington Ratio bursts are very effective at heating essentially all of the
gas in the galaxy and driving outflows

e EFasy to understand: Requiring that

EMech,BH Tdyn,gal =— Ethermal,ga,s

® gives:

f as €rad €mech | "1 o 0 Mgy -
a0 =1% (35 ) (57) (555 ) ( )
Jeaa = 17 (1% 0.1/ \10-3 200kms—1/ \ 108 Mg

(e.g. Silk + Rees 98)




—ffect of Dust

e BH, Stars emit UV, Optical, IR photons
e As you absorb UV/Optical photons, that energy is added as IR photons

¢ \We solve the radiative transfer equation with scattering, absorption, an
arbitrary source of isotropic photons (stars) and a central point source (BH) in
the radial direction by taking moments of the equation.



—ffect of Dust

Cumulative Eddington Ratio Distribution
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—ffect of Dust

e For ABSORPTION: photons get used up

dp  Lmin(7,1)
dt C

e For SCATTERING: photons build up and diffuse out
dp Lt
dt ¢
e Dust opacity in IR only a few times electron scattering opacity in Milky Way,

so need ~Compton thick surface densities for scattering of IR photons by
dust to make a big difference.

(see Thompson, Quataert + Murray 05
Murray, Quataert + Thompson 05
Debuhr et al 10, 11)



—ffect of Dust

Cumulative Eddington Ratio Distribution
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Given enough gas, dust can make a large difference



Conclusions

e Momentum injected by broad-line wind is the dominant factor in determining
black hole growth

® Physics operating between 3 pc and 100 pc makes a difference!
e Dust does not seem to make a big difference...

e Unless there’s enough gas to be optically thick in the IR (hearly Compton-
thick), then it does make a difference



