How Outflows *Feed*Galaxy Growth

Benjamin D. Oppenheimer Leiden University

Romeel Davé¹, Dušan Kereš¹, Mark Fardal¹, Juna Kollmeier¹, Neal Katz¹, David Weinberg¹, Kristian Finlator, Jared Gabor

I'm mostly a quasar absorption line (QAL) person, what gives me the right¹ to tell you how galaxies assemble and grow?

^{1. &}quot;What give you the right?" is an acceptable question for me at the end of this talk.

The main thing that I learned matching QAL statistics for CIV from z=6->0, OVI at low-z, etc... is that GSW-ejected metals remain close to galaxies!!

Constant wind, ϵ =1.0 (v_w =680 km/s, η =2)

Variable wind, $\epsilon_{ave}^{0.4}$ ($v_w^{0.1}$)

Opp et al. 2010

Moderate variable wind (vzw) model has a **Holistic Advantage**

- 1) This model reproduces the observed z=0 galactic stellar mass function between $M=10^9$ $5x10^{10}$ M_{sol} , and many more things!
 - a.) See Romeel talk about the **Equilibrium Model** or read our latest papers (Davé, Opp., Finlator & Davé, Finlator, Opp. 2011).
 - b.) Make sure to talk to Kristian Finlator about the successes at high redshift.
- 2) These winds enrich the IGM to the observed levels, and stands up in rigorous comparisons to detailed QAL observations from z=6->0 (Opp. et al. 2006,08,09ab,11)
- 3) Only Moderate Energy required in our star-formation feedback model. Most galaxies need only 10-30% of SN energy coupled to kinetic winds.

How Do Galaxies Get Their Gas?™

Stellar Assembly of Galaxies

Accretion & Star Formation

Opp. et al. 2010: Same results as Kereš et al. 2009a in sims. with no winds (nw):

- 1. Assembly primarily via cold mode accretion (T_{acc}<2.5x10⁵ K).
- 2. Larger accretion rates at higher mass at all redshifts.
- 3. SFRs for a given mass halo declines with redshift.

How Do Galaxies Get Their Gas?™

- Hot Mode
- Spherical accretion
- Shock to virial temperature
- Rees, Ostriker, White, Silk
- Stopped via
 Preventative (Velvet Rope¹) Feedback

- Cold Mode
- Smooth, filamentary accretion
- Below T_{vir} , <2.5x10⁵ K
- Kereš, Katz, Birnboim,
 Dekel
- Stopped via Ejective (Bouncer¹) Feedback

1. Neal Katz says (from experience?) that you are either prevented from going into a club by a velvet rope, or you're kicked out by the bouncer once you get in.

How Do Galaxies Get Their Gas?™

You need ejective/bouncer feedback at all masses to solve the over-cooling problem.

- Star formation too efficient in analytical treatments (e.g White & Frenk 1991) and simulations (e.g. Kereš 2009b)
 - z=0 stellar baryon fraction too high (observed ~5-8%)
 - cosmological simulations w/o feedback (≥ 18-20%)

Kereš et al. 2009b- rank order galaxies by mass, calculate feedback required

The z=0 Galactic Stellar Mass Function (GSMF)

The z=0 Galactic Stellar Mass Function (GSMF)

A fundamental prediction of galaxy formation theory over a Hubble time. The result of stellar mass assembly usually fitted using a Schechter function: $dn/dlogM \sim M^{\alpha} \exp(-M/M^*)$.

The Schechter function holds a few distinct features indicating how galaxies assemble over a Hubble time-

- 1. A steep exponential cutoff at high mass.
- 2. A preferred mass for star formation at ~M*
- 3. A shallower faint-end slope, dn/dlogM= M^{α} where α is -1 to -1.3, compare to mass function of haloes α^{\sim} -2

May also not be a pure Schechter function (double Schechter functions are favored by Baldry et al. 2008 and others), steeper mass function for dwarf galaxies?

z=0 Galaxy Stellar Mass Functions in other Simulations SAMs

Crain et al. 2009- GIMIC Simulations Costant wind sim: ε=1.5, η=4 $v_{wind} = 600 \text{ km/s}$ p.s. most OWLS sims. are similar

Bower et al. 2006/2009 SAM

Thanks Durham for confronting GSMF's!

Galaxy Formation: The Third Way

- A new mode defines how galaxies are formed.
 - Hot
 - Cold
 - & Wind?

Differential Recycling- Tracking wind particles shows they return to more massive galaxies faster.

1012

SFR

 10^{11}

Cold Mode

Wind Mode

 10^{13}

 10^{14}

Hot Mode

Differential Recycling- Tracking wind particles shows they return to more massive galaxies faster.

Recycled Wind Accretion - Recycled winds dominate *accretion and SF* where winds recycle rapidly.

- •Majority of stars formed from gas that has been ejected in a wind.
- •Where t_{rec} <~ t_{Hubble}
 recycled wind accretion
 dominates overall
 accretion, star formation,
 and galaxy growth.
- •Favors growth via wind mode at late times and for more massive galaxies.

Differential Recycling- Tracking wind particles shows they return to more massive galaxies faster.

Recycled Wind Accretion - Recycled winds dominate *accretion and SF* where winds recycle rapidly.

The Three Mode z=0 GSMF

- Mass-dependent recycling-> wind mode accretion-> galaxy growth biased to higher masses.
- Wind mode flattens the GSMF below M* so that slope is M^{-1.4}!
- Without wind mode, GSMF slope is M⁻² like DM Halo MF.

Opp. et al. 2010

Our GSW wind prescription need only σ^{-1} , and avoid needing $\sigma^{-3.2}$ like the Durham GALFORM Model, or $\sigma^{-3.5}$ or $\sigma^{-4.0}$ like Guo et al. 2011.

How galaxies are built: 1) with only cold+hot mode and then 2) with all 3 Modes.

Rank order galaxies by mass, compare f_{supp} relative to no wind simulation, just like Kereš 2009b. 1) With only cold+hot mode, wind simulations have similarly looking GSMFs. All have dn/dlogM~M⁻². 2) Wind Recycling adds much more diversity and creates the faint end slope of the GSMF: dn/dlogM~M^{-1.4} for our favored vzw wind model. 3) Jared Gabor is finishing his thesis on how to suppress the high-mass end via mass-dependent (AGN) feedback and physical treatment of gas in halos to prevent accretion.

The **SUPERPOWERS** of GSW Feedback

Review of Opp., Dave,
Keres, Fardal, Katz,
Kollmeier, Weinberg 2010

Constant Wind (cw) *More wrong*

Variable Wind (vzw) *More right*

1. Ejective Feedback

η=2: 2x as many winds as *'s formed

 $\eta=1/\sigma$: small galaxies with larger mass loading is key!

2. Preventative Feedback

680 km/s winds suppress accretion by cold streams.

Low/moderate velocities do little to suppress streams.

3. Recycled Wind Mode

Dominates only in massive halos: $10^{12.5} M_{sol}$

Dominates over hot +cold. Main growth for $M_{halo}>10^{11.3} M_{sol}$

Suppression of >M* Galaxies

More needed even with extreme GSWs to suppress massive gal's.

What Jared can do for you: suppress >M* gals + make red sequence.

Evidence for Wind Mode? How about an ISM's worth of gas in halos of SF galaxies!!

Tumlinson et al. OVI COS Project, submitted to Science.

THIS IS A BIG DEAL: actual observations showing $10^{9.3-10}$ M_{\odot} of Z_{\odot} gas at 20-150 kpc and below the escape velocity.

-Does it fall back onto galaxy or join the

More evidence for Wind Mode? Glenn Kacprzak's observations of Mg II rotating+accreting disks.

vel (km

Summary Points

- 1. A wind model first constrained by fitting metal QALs at high-z gets the masses of the z=0 GSMF right within 0.1 dex over the range $M_*=10^9-10^{10.6}~M_{sol}$.
- 2. Moderate feedback leaves metals close to galaxies, where they can easily recycle onto galaxies. This is heavily mass dependent, hence mass-dependent differential recycling leads to recycled wind accretion dominating mass assembly more as M_{*} increases, and shaping the GSMF.
- 3. Exciting new galaxy-absorber observations are changing our view of how far outflows go and where accretion/re-accretion may come from.

One last note: A hydro simulation finds a solution to the faint-end GSMF slope that lies outside the parameter space explored by current SAMs. SAMs require hydro-informed parameter spaces to explore.

Thank You to the conference organizers and Durham!!!

Breaking the Degeneracy of Metal Lines: the z=0 Galactic Mass Function

One way to break this degeneracy: look at a completely different observation: The z=0 galactic stellar mass function of momentum-conserved feedback provides best fit to galaxies $M_*<5x10^{10} M_{\odot}$ (Opp. et al. 2010).

These are the primary enrichers of the IGM:
Galaxies below M*

