# A method for measuring the mass profile of dwarf spheroidals

Jorge Peñarrubia in collaboration with Matt Walker



Durham 2011

# Dwarf Spheroidal (satellite) galaxies

Thursday, 21 July 2011

# Dwarf Spheroidal (satellite) galaxies



★ Faintest galaxies in the known Universe: |0<sup>3</sup> < L/L<sub>sol</sub> < 10<sup>7</sup>

High mass-to-light ratios: |0 < M/L <|000 (Potential dominated by DM)

★Old, metal poor stellar
populations
0.1 < age/Gyr < 12</pre>

No gas
No rotation (pressure-

supported)



#### Hydro N-body sims. of dSph formation

(SF/feedback tuned to reproduce scaling relationships)

DM halo profile of dSphs unaffected by baryons =cusp

(Sawala+10; Parry+11)

(different codes + SF/feedback recipes)



#### Constraints on DM particle mass comparable to those from Lyα forest

#### **Can we measure ρ<sub>DM</sub>(r)**?





**stars** ≡ mass-loss tracers of the **DM potential** 

Thursday, 21 July 2011



**stars** ≡ mass-loss tracers of the **DM potential** 

### Jeans equations

$$\frac{1}{\nu}\frac{d}{dr}\left(\nu\bar{v_r^2}\right) + \frac{\beta\bar{v_r^2}}{r} = -\frac{GM(r)}{r^2},$$

\* Halo mass profile \* stellar density profile \* radial component of the velocity dispersion \* velocity anisotropy  $\beta \equiv 1 - \sigma_t^2 / \sigma_r^2$ 



#### Jeans equations

$$\frac{1}{\nu}\frac{d}{dr}\left(\nu\bar{v_r^2}\right) + \frac{\beta\bar{v_r^2}}{r} = -\frac{GM(r)}{r^2},$$

\* Halo mass profile \* stellar density profile \* radial component of the velocity dispersion \* velocity anisotropy  $\beta \equiv 1 - \sigma_t^2 / \sigma_r^2$ 

#### Projected velocity dispersion

$$\sigma_p^2(R) = \frac{2}{I(R)} \int_R^\infty \left( 1 - \beta \frac{R^2}{r^2} \right) \frac{\bar{\nu v_r^2 r}}{\sqrt{r^2 - R^2}} dr.$$





$$\frac{1}{\nu}\frac{d}{dr}\left(\nu\bar{v_r^2}\right) + 2\frac{\beta\bar{v_r^2}}{r} = -\frac{GM(r)}{r^2},$$

\* Halo mass profile \* stellar density profile \* radial component of the velocity dispersion \* velocity an isotropy  $\beta \equiv 1 - \sigma_t^2 / \sigma_r^2$ 

#### Projected velocity dispersion

$$\sigma_p^2(R) = \frac{2}{I(R)} \int_R^\infty \left( 1 - \beta \frac{R^2}{r^2} \right) \frac{\bar{\nu v_r^2 r}}{\sqrt{r^2 - R^2}} dr.$$

# DM cusps or cores?



Unknown β(r)

e.g. Battaglia+08; Walker+09

Can we break the degeneracy?

Walker & Peñarrubia (2011)

#### M -- $\beta$ degeneracy breaks at R $\approx$ R<sub>half</sub>

Peñarrubia+08; Walker+09; Wolf+10; Amorisco & Evans 2010



Walker & Peñarrubia (2011)

#### M -- $\beta$ degeneracy breaks at R $\approx$ R<sub>half</sub>

Peñarrubia+08; Walker+09; Wolf+10; Amorisco & Evans 2010

#### Some dSphs show spatially + kinematically distinct stellar components



Walker & Peñarrubia (2011)

#### M -- $\beta$ degeneracy breaks at R $\approx$ R<sub>half</sub>

Peñarrubia+08; Walker+09; Wolf+10; Amorisco & Evans 2010

#### Some dSphs show spatially + kinematically distinct stellar components









![](_page_17_Picture_0.jpeg)

Walker & Peñarrubia (2011)

#### MCMC algorithm to separate 2 stellar components + MW foreground contamination

$$L(\{R_i, V_i, W_i'\}_{i=1}^{N_{\text{sample}}} | \vec{S}) = \prod_{i=1}^{N_{\text{sample}}} \left[ f_1 \frac{w(R_i) p_{R,1}(R_i) p_{V,1}(V_i) p_{W',1}(W_i')}{\int_0^\infty w(R) p_{R,1}(R) dR} + f_2 \frac{w(R_i) p_{R,2}(R_i) p_{V,2}(V_i) p_{W',2}(W_i')}{\int_0^\infty w(R) p_{R,2}(R) dR} + (1 - f_1 - f_2) \hat{p}_{\text{MW},R}(R_i) \hat{p}_{\text{MW},V}(V_i) \hat{p}_{\text{MW},W'}(W_i') \right]$$

![](_page_17_Figure_4.jpeg)

### Method

Walker & Peñarrubia (2011)

#### MCMC algorithm to separate 2 stellar components + MW foreground contamination

$$L(\{R_i, V_i, W_i'\}_{i=1}^{N_{\text{sample}}} | \vec{S}) = \prod_{i=1}^{N_{\text{sample}}} \left[ f_1 \frac{w(R_i) p_{R,1}(R_i) p_{V,1}(V_i) p_{W',1}(W_i')}{\int_0^\infty w(R) p_{R,1}(R) dR} + f_2 \frac{w(R_i) p_{R,2}(R_i) p_{V,2}(V_i) p_{W',2}(W_i')}{\int_0^\infty w(R) p_{R,2}(R) dR} + (1 - f_1 - f_2) \hat{p}_{\text{MW},R}(R_i) \hat{p}_{\text{MW},V}(V_i) \hat{p}_{\text{MW},W'}(W_i') \right]$$

**Priors** (14 free parameters) •  $f_{mem} = (N_1 + N_2) / (N_1 + N_2 + N_{MW})$ •  $f_{sub,2} = N_2 / (N_1 + N_2)$ Fraction of dwarf members Fraction of stars in comp. 2  $p_i(R, V, W) = p_{R,i}(R) \overline{p_{V,i}(V)} p_{W,i}(\overline{W});$ Half-light radius of comp. 2 • r<sub>half,2</sub> •  $r_{half,1} / r_{half,2}$ Ratio of Half-light radii • < W<sub>1</sub>> Mean spectral index of comp. 1  $p_{R,i}(R) = \frac{2R/r_i^2}{\left(1 + \frac{R^2}{r_i^2}\right)^2}$ • <W<sub>1</sub>> - <W<sub>2</sub>> Spectral index difference Plummer prof: Spectral index dispersion of comp.1 • σ<sub>w1</sub> • σ<sub>w2</sub> Spectral index dispersion of comp.2 Velocity dispersion of comp.1 Velocity dispersion of comp.2 • σ<sub>v2</sub> Gaussian  $p_{V,i}$  and  $p_{V,i}$ Proper motion in R.A. • μ<sub>α</sub> Proper motion in Declination • μ<sub>δ</sub>

Tests

Walker & Peñarrubia (2011)

#### Synthetic data sets:

$$\nu_{*}(r) = \nu_{0} \left(\frac{r}{r_{*}}\right)^{-\gamma_{*}} \left[1 + \left(\frac{r}{r_{*}}\right)^{\alpha_{*}}\right]^{(\gamma_{*} - \beta_{*})/\alpha_{*}} .$$

$$Plummer:$$

$$(\alpha, \beta, \gamma)_{*} = (2,5,0)$$

$$\rho_{\mathrm{DM}}(r) = \rho_{0} \left(\frac{r}{r_{\mathrm{DM}}}\right)^{-\gamma_{\mathrm{DM}}} \left[1 + \left(\frac{r}{r_{\mathrm{DM}}}\right)^{\alpha_{\mathrm{DM}}}\right]^{(\gamma_{\mathrm{DM}} - \beta_{\mathrm{DM}})/\alpha_{\mathrm{DM}}} .$$

$$Plummer:$$

$$(\alpha, \beta, \gamma)_{*} = (2,5,0)$$

$$(\alpha, \beta, \gamma)_{\mathrm{DM}} = (1,3,1)$$

**Opsikov-Merritt DFs** 

$$\equiv E + \frac{L^2}{2r_a^2} = \frac{1}{2} [v_r^2 + (1 + r^2/r_a^2)v_t^2] + U(r)$$
where  $\rho_O(r) = (1 + r^2/r^2)\rho(r)$  DM potential

$$\begin{split} f(Q) &= \frac{1}{\sqrt{8}\pi^2} \int_Q^0 \frac{d^2 \rho_Q}{dU^2} \frac{dU}{\sqrt{U-Q}} \quad \text{where} \quad \rho_Q(r) \equiv (1+r^2/r_a^2)\rho(r) \quad \text{DM potermult} \\ \beta &\equiv 1 - \frac{\sigma_t^2}{\sigma_r^2} = \frac{r^2}{r_a^2 + r^2} \quad \begin{array}{c} r << r_a \quad \beta = 0 \text{ (isotropic)} \\ r >> r_a \quad \beta = 1 \text{ (radially anisotropic)} \end{array} \end{split}$$

Q

JT T

#### Tests

Walker & Peñarrubia (2011)

| TABLE 3                                               |  |  |  |
|-------------------------------------------------------|--|--|--|
| TESTS ON SYNTHETIC DATA: GRID OF INPUT PARAMETERS FOR |  |  |  |
| DYNAMICAL TEST MODELS                                 |  |  |  |

| Profile                       | Parameter                                                                                                 | values considered                                              |
|-------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Stellar Subcomponent (Eq. 15) | $r_*/r_{ m DM} \ lpha_* \ eta_* \ eta_* \ \gamma_* \ r_a/r_*$                                             | 0.10, 0.25, 0.50, 1.0, 1.5<br>2<br>4,5,6<br>0.1<br>$1, \infty$ |
| Dark Matter Halo (Eq. 16)     | $ ho_0/(M_\odot { m pc}^{-3})$<br>$r_{ m DM}/{ m kpc}$<br>$ ho_{ m DM}$<br>$ ho_{ m DM}$<br>$ ho_{ m DM}$ | 0.064<br>1<br>1<br>3<br>0,1                                    |

- Combination of parameters= 60 dynamical models.
- Combination of 2 comp.=3600 models

For each dynamical model 10 realizations with: \*  $1000 < N_1 + N_2 + N_{MW} < 3000$ \*  $0.4 < (N_1 + N_2)/(N_1 + N_2 + N_{MW}) < 0.9$ \*  $0.0 < (<W_2 > - <W_1 >)/A < 0.25$ 

![](_page_20_Figure_7.jpeg)

#### Tests

#### Walker & Peñarrubia (2011)

#### TABLE 3 Tests on synthetic data: grid of input parameters for dynamical test models

| Profile                       | Parameter                         | values considered          |
|-------------------------------|-----------------------------------|----------------------------|
| Stellar Subcomponent (Eq. 15) | ,                                 |                            |
|                               | $r_*/r_{\rm DM}$                  | 0.10, 0.25, 0.50, 1.0, 1.5 |
|                               | $\beta_*$                         | 4,5,6                      |
|                               | $\gamma_{*}$                      | 0.1                        |
| Dark Matter Halo (Eq. 16)     | $r_a/r_*$                         | 1,∞                        |
|                               | $ ho_0/(M_{\odot} {\rm pc}^{-3})$ | 0.064                      |
|                               | $r_{\rm DM}/{\rm kpc}$            | 1                          |
|                               | $\alpha_{\rm DM}$                 | 1                          |
|                               | PDM<br>2DM                        | 5<br>0 1                   |
|                               | /DM                               | 0,1                        |

- Combination of parameters= 60 dynamical models.
- Combination of 2 comp.=3600 models

For each dynamical model 10 realizations with: \*  $1000 < N_1 + N_2 + N_{MW} < 3000$ \*  $0.4 < (N_1 + N_2)/(N_1 + N_2 + N_{MW}) < 0.9$ \*  $0.0 < (<W_2 > - <W_1 >)/A < 0.25$ 

#### Isotropic Anisotropic

![](_page_21_Figure_9.jpeg)

#### Tests

#### Walker & Peñarrubia (2011)

TABLE 3 Tests on synthetic data: grid of input parameters for dynamical test models

![](_page_22_Figure_3.jpeg)

• Combination of 2 comp.=3600 models

For each dynamical model 10 realizations with: \*  $1000 < N_1 + N_2 + N_{MW} < 3000$ \*  $0.4 < (N_1 + N_2)/(N_1 + N_2 + N_{MW}) < 0.9$ \*  $0.0 < (<W_2 > - <W_1 >)/A < 0.25$ 

![](_page_22_Figure_6.jpeg)

 $M(R_{\rm half}) \approx \mu R_{\rm half} \langle \sigma_V \rangle^2$ 

ests

Walker & Peñarrubia (2011)

![](_page_23_Figure_2.jpeg)

- Combination of parameters= 60 dynamical models.
- Combination of 2 comp.=3600 models

For each dynamical model 10 realizations with: \*  $1000 < N_1 + N_2 + N_{MW} < 3000$ \*  $0.4 < (N_1 + N_2)/(N_1 + N_2 + N_{MW}) < 0.9$ \*  $0.0 < (<W_2 > - <W_1 >)/A < 0.25$ 

![](_page_23_Figure_6.jpeg)

Test results: Slope of mass profile tends to be slightly under-estimated

Walker & Peñarrubia (2011)

#### **14-parameter MCMC fit**

- Fornax, Scuptor: 2 comp. are clearly separated
- Carina: single component

#### We recover published data on:

- 1. proper motions
- 2. mean velocity dispersion
- 3. averaged R<sub>half</sub>
- 4. mean metallicity

![](_page_24_Figure_10.jpeg)

Walker & Peñarrubia (2011)

![](_page_25_Figure_2.jpeg)

N<sub>sample</sub>= 1497 spectra

N<sub>sample</sub>= 2603 spectra

Walker & Peñarrubia (2011)

![](_page_26_Figure_2.jpeg)

Walker & Peñarrubia (2011)

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

NFW ruled out in Fornax and Sculptor at a 96% and 99% confidence level

Walker & Peñarrubia (2011)

![](_page_28_Figure_2.jpeg)

$$\rho_{\rm DM} = \frac{\rho_0}{\left(r/r_{\rm DM}\right)^{\gamma_{\rm DM}} \left[1 + (r/r_{\rm DM})^{\alpha_{\rm DM}}\right]^{(\beta_{\rm DM} - \gamma_{\rm DM})/\alpha_{\rm DM})}}$$

Profiles from collision-less cosmological simulations of satellites ruled out in Fornax and Sculptor at a 99.98% and 99.999% confidence level

### Summary

• 2 out of 2 dSphs show DM cores

• This measurement appears not to be easily accommodated within

- CDM (Sawala+10; Parry+11)
- Tantalizing case for WDM (Bode+01: m<sub>X</sub>~10 kev) ???

### **Future Work**

I. Inspect model built-in assumptions (e.g. triaxial DM halo;  $N_{comp}>2$ ) 2. Increase the sample of stars with measured radial velocities in Fornax (L/L<sub>sol</sub>~10<sup>7</sup>) and Sculptor (L/L<sub>sol</sub>~10<sup>6</sup>) dSphs 3. **Fainter** (L/L<sub>sol</sub>~10<sup>5</sup>--10<sup>6</sup>) candidates for holding multiple stellar populations:

Milky Way: Draco, Canis Venatici, Ursa Minor, Leo I and Leo II Andromeda: And I, II and VI