Dissecting the Milky Way's (Stellar) Disk

H.-W. Rix (MPIA, Heidelberg) Durham, July 19, 2011

In collaboration with: L. Zhang, C. Liu , G. van den Ven, A. Buedenbender @ MPIA J. Bovy @ NYU C. Rockosi @ Santa Cruz & the SEGUE collaboration (in particular: Lee, Schlesinger, An)

What makes the MW disk (cosmologically) interesting?

- Most MW stars are in the disk!
- Making 'realistic disks' in *ab initio* simulations remains formidable challenge
- What sets structure (e.g. radial/vertical profile) of stellar disks?
 - birth radius vs. present location
 - 'distinct' components a sensible description?
- What is the role of internal vs external drivers of disk evolution?
 - How much (dynamical) formation memory is erased?

(Stellar) Disk Evolution Processes

- Gas Infall & Star Formation
- Radial Migration

(Sellwood & Binney 2002, Minchev et al 2009)

- Spiral arms, bars change orbits near corotation resonance
 - radius changes without eccentricity boost
 - bars/spirals arms are presumably transient $\rightarrow R_{co-rot}$ wanders
- Qualitatively inevitable whenever bars/spirals have been present
- Minor mergers
 - can heat the disk (e.g. Moster et al 2010)
 - can augment the disk (e.g. Abadi et al 2003)
 - Qualitatively inevitable

Characterizing the Stellar Disks(s) Geometry & Kinematics

- Stellar Number Density
 - double exponential vertically (thick/thin disk)
 - exponential in radius
- Stellar kinematics
 - velocity dispersion increases with height
 - mean rotation velocity decreases accordingly

50

30

20

0

400

Z [pc]

200

600

[km/s]

 σ_{z} , σ_{ϕ} , σ_{r}

• Two component description sensible ...but the geom./kinem. data show no 'breaks'

Characterizing the Stellar Disks(s) Chemo-kinematic

- Bi-modal [α /Fe] distribution
 - Lee et al 2011, Navarro et al 2011
 - α -enhanced $\leftarrow \rightarrow$ rapid (early?) enrichment, best practical 'age tag'?
- Strong correlation between kinematics and abundances:
 - more metal-poor: kin. hotter
 - 'thick disk' is α -enhanced [α /Fe]>0.2
- α -enhanced stars come from inner galaxy
- α-enhancement better predictor of velocity dispersion than [Fe/H]

Testing Disk-Evolution Scenarios: data-model comparison around the Sun's position

- metallicity distribution of stars near the Sun as a consequence of radial migration (Schoenrich & Binney 2009)
 - [α /Fe] age proxy, [Fe/H] birth radius proxy
 - Does that model tuned to R_o get things right at other radii?

- What created the thick disk?
 - Satellite ingestion, satellite heating, 'wet' merger, or radial migration?
 - Excentricity distribution as a diagnostic?
 Sales et al 2009, Dierickx et al 2010, Wilson et al 2011
- Need non-local, spatially resolved data-model comparisons!

SEGUE

'SDSS spectroscopizes the Milky Way'

Yanny et al 2009; Rockosi: PI

- spectra for 240,000 stars
 - ~10 targeting categories
 - spectral res. R~1800
 - $14 < m_r < 20$
- yielding:
 - T_{eff}, log g
 - [Fe/H] (±0.2 dex), [α /Fe] (0.06dex) (Lee et al 09)
 - (MS) distances to ~7% (An et al 2010)
 - δv ~ 7 km/s (δμ ~ 2.5mas/yr)
- good:
 - radial velocities 'good enough': ~8 km/s
 - distances 'good': ~5-10%
 - two abundance numbers: [Fe/H], [α /Fe]
 - giant/dwarf separation using log g
- less good:
 - mostly high latitude / optical spectra
 - D_{min} = 300-700 pc

Galactic Longitude

The MW Disk Structure and Kinematics for Single-Abundance Sub-Populations Bovy, Rix, Zhang, Liu (in prep.)

- Considering only a sub-population in [α/Fe] (& [Fe/H]) space what
 - is the *spatial* structure?
 - vertically, radially
 - is the *kinematic* structure?
 - vertically, radially
- Data:
 - SEGUE K-dwarf (& G-dwarf) sample
 - NB: complex selection function
 - Less important for kinematics
 - Velocities (and errors) distance dependent

Spatial distribution of $[\alpha/Fe]$ -components: accounting for the sampling function

For given density model:

$$\mathbf{v}_*(R,z \mid \vec{p}_*) = \left(\sum_i \mathbf{v}_{0,i} \times e^{-\frac{|z|}{h_{z,i}(R)}}\right) \times e^{-\frac{(R-R_{\bullet})}{R_{\exp}}}$$

how best to determine the model parameters?

Multiple scale heights?h_z(R): flaring?

Sub-set of stars (65) targeted in m_r, g-r color-magnitude per (faint/bright) plate •S/N cut for [a/Fe] determination Construct sampling function:

$$W_{spec}(R,z \mid (1,b), m_r, g-r, [Fe/H], bright/faint)$$

Schlesinger et al, Bovy, HWR et al (in prep.)

Z [kpc]

First result on fitting spatial distribution of [a/Fe]-selected sub-populations

Determine models:

$$v_*(R, z \mid \vec{p}_*) = \left(\sum_i v_{0,i} \times e^{-\frac{|z|}{h_{z,i}(R)}}\right) \times e^{-\frac{(R-R_*)}{R_{exp}}}$$

maximize $\mathcal{L}(\vec{D}_i \mid \vec{p}_*, w_{spec})$ with $\vec{D}_{i=1, N_{sub-sample}}$

For a given [a/Fe]-subpopulation: •single vertical exponential • $h_z(R_o)$ ~ 280pc – 900 pc ($\rightarrow \alpha$ -enhanced)

• R_{exp} ~ 3 – 2 kpc ($\rightarrow \alpha$ -enhanced)

•Sub-disks flare ~3 kpc scale

This does not mean that the overall (luminosity-weighted) disk flares or is radially isothermal!

Conclusions

- Data now enable 'non-local' analysis of abundance-selected sub-samples
 - selection function modeling is crucial for spectroscopic surveys a la SEGUE
 - $[\alpha/Fe]$ is proxy for age
 - determines scale height/ kinematics more than [Fe/H]
- [α/Fe]-sub-samples appear simple disk building blocks:
 - $\sigma_{\rm z}$ near-isothermal in z and R
 - near-(single) exponential in z and R, *flaring*!
 - no evidence for dynamical dichotomy?
- Radial migration explains many of these aspects naturally:

as stars migrate out they do not cool vertically → isothermal(?) & flaring

• 'Oort-limit' = $\Sigma_{disk}(z)$ imminent

