# THE RISE AND FALL OF DISKS IN COSMOLOGICAL SIMULATIONS

## LAURA V. SALES

#### MPA

Max Planck Institute for Astrophysics





Collaborators: R. Crain, C. Frenk, I. McCarthy, J. Navarro, J. Schaye, T. Theuns, S. White

### Laura V. Sales

### The rise and fall of disks in cosmological simulations



(Franx et al. 2008, Kriek et al. 2009, Szomoru et al. 2011)

## Established Hubble sequence at z~2

Strongly star-forming (~150 Msun/yr)

> 0.5" (4kpc)

### Red & Dead

Kriek+ '06

van Dokkum+ '08



Ultra-compact R<sub>e</sub>~1 kpc

## Extended disks R<sub>h</sub>~4kpc

Genzel 2006, Forster-Schreiber+ '06,'10 Wrhight+, 07 Bouche+ '07 / Cresci+ '09 Law+ '09



1

### Laura V. Sales

### The rise and fall of disks in cosmological simulations





# Morphologies are a transient phenomena (Ellis 1998, Steinmetz & Navarro 2002)



GASS 3505: a gas-rich "red and dead" galaxy





(Credits: Barbara Catinella)

# Morphologies are a transient phenomena (Ellis 1998, Steinmetz & Navarro 2002)



**\*** How do populations of galaxies at different z compare?

![](_page_4_Picture_6.jpeg)

Where/What are they descendants?

## **Galaxies-Intergalactic Medium Interaction Calculation**

### ... or GIMIC simulations

![](_page_5_Figure_4.jpeg)

- K Gadget-3 SPH/Nbody code
- \* Metal cooling, photoionization, star formation, kinetic (stellar) feedback, chemodynamics
- Low/High Resolution runs (mp<sup>gas</sup> (high res) ~ 1.45 10<sup>6</sup> h<sup>-1</sup>M<sub>sun</sub>)

**\*** Sampling of different environments: +2 $\sigma$ , +1 $\sigma$ , 0 $\sigma$ , -1 $\sigma$ , -2 $\sigma$  < $\rho$ >

Crain et al. 2009

## Sampling the Hubble Sequence in simulations

![](_page_6_Figure_3.jpeg)

 $\begin{aligned} \text{Morphology estimator:} \\ \kappa_{rot} = \frac{\sum m_i j_{zi^2} / R_i^2}{\sum m_i V_i^2} \end{aligned}$ 

Amount of k. energy on ordered rotation around z-axis

### **Total kinetic energy**

*κ*<sub>rot</sub>>0.7 are disk dominated galaxies with B/T<0.2.</li>
Because is based on the specific angular momentum, *κ*<sub>rot</sub> correlates very well with *λ*<sub>R</sub>

(mass weighted, projected specific angular momentum, Emsellem+ 2007)

![](_page_6_Figure_9.jpeg)

# Results

### The evolution of disk galaxies across cosmic time

## Massive disk galaxy populations across time: Stellar masses

![](_page_8_Figure_3.jpeg)

![](_page_8_Figure_4.jpeg)

## Massive disk galaxy populations across time: Gas fractions

![](_page_9_Figure_3.jpeg)

## Massive disk galaxy populations across time: Dark matter halos

![](_page_10_Figure_3.jpeg)

### Disks galaxies were more frequent in the past

![](_page_11_Figure_3.jpeg)

## **Disk population descendants**

![](_page_12_Figure_3.jpeg)

## **Spotting the descendants of z=2 disks in the nearby Universe**

![](_page_13_Figure_3.jpeg)

### Select massive, extended & star forming disk galaxies at z=2

![](_page_13_Figure_5.jpeg)

(See Sales et al. 2009 for details about the properties of halos hosting extended disk galaxies at z=2)

## **Spotting the descendants of z=2 disks in the nearby Universe**

![](_page_14_Figure_3.jpeg)

### Laura V. Sales

The rise and fall of disks in cosmological simulations

### **Spotting the descendants of z=2 disks in the nearby Universe**

![](_page_15_Figure_3.jpeg)

### The present day dark matter halos of extended z=2 disks

![](_page_16_Figure_3.jpeg)

 Halos grew ~1dex from z=2 to z=0: low mass groups (5x10<sup>12</sup>-2x10<sup>13</sup> M<sub>sun</sub>) are the preferred sites for the descendants of extended z=2 disks

• Disk-dominated galaxies remained in those halos showing the least mass evolution (condition necessary but not sufficient)

# Conclusions

Cosmological volume simulations (GIMIC, OWLS, etc) allow to sample the full Hubble Sequence using a *fixed* choice of baryonic physics implementation. Learn by <u>relative</u> <u>comparison</u>.

Simulated disks were less massive, more common and more gas rich in the past in good agreement with observations

**\*** Morphology is only a transient: only ~2% of (massive) z=2 disks remain as disks at z=0. But it increases to 10% and 20% for disks selected at z=1 and z=0.5

The <u>descendants of extended star-forming disks at z=2</u> evolved mostly into early type galaxies sitting today in low/moderate mass groups (~10<sup>13</sup> M<sub>sun</sub>). 75%/25% are centrals/ satellites. 70%/30% are fast/slow rotators.

Interestingly, ~10% of these extended disks avoided violent halo/galaxy growth and conserve today their disk-dominated morphology. They represent the oldest/most massive extreme of the z=0 disk galaxy population.