

FROM THE FIRST STARS TO DWARF GALAXIES

John Wise (Princeton → Georgia Tech) Collaborators: Tom Abel (Stanford), Michael Norman (UCSD), Britton Smith (MSU), & Matthew Turk (Columbia)

OPEN QUESTIONS: POP III STARS AND GALAXIES BEFORE REIONIZATION

- How did metal-free (Pop III) stars affect high-z structure formation?
 - Metal enrichment
 - Reionization
 - Galaxy properties
- Why do current models overpredict SF in low-mass galaxies at high redshift?
- How do these dwarf galaxies depend on environment?
- Do Pop III stars leave any physical (e.g. metallicity gradients, M/L ratios, metallicity distributions) imprint on dwarf galaxies?

OUR APPROACH: SIMULATIONS

- Small-scale AMR radiation hydro simulations
- Include as much physics as possible
- Coupled radiative transfer (ray tracing in the optically thin and thick regimes)

enzo.googlecode.com

POPULATION III STARS

- Various computational techniques (AMR, SPH, Arepo) have calculated that the first stars are massive (10–300 M_☉) and could be a mix of isolated and binary systems. Abel+ 2002, Bromm+ 2002, Yoshida+ 2006, Turk+ 2009, Greif+ 2011
- L ~ 10⁶ L_{\odot}, ~ 10⁵⁰ ionizing photons / sec Schaerer (2002)
- Lifetime ~ 3 Myr
- H₂ is the main coolant, which is easily dissociated by distant sources of radiation.

STELLAR ENDPOINTS OF METAL-FREE STARS

Initial stellar mass (solar masses)

Heger et al. (2003)

Abel, Wise, & Bryan (2007) H II REGION OF A PRIMORDIAL STAR

Density

Temperature

1.2 kpc
10⁶ M_☉ DM halo; z = 17; single 100 M_☉ star (no SN)
Drives a 30 km/s shock wave, expelling most of the gas
DM cusp → core (Wise & Abel 2008)

Abel, Wise, & Bryan (2007) H II REGION OF A PRIMORDIAL STAR

10⁶ M_☉ DM halo; z = 17; single 100 M_☉ star (no SN)
Drives a 30 km/s shock wave, expelling most of the gas
DM cusp → core (Wise & Abel 2008)

Wise, Turk, Norman, & Abel, arXiv:1011.2632

OUR APPROACH: AMR RAD-HYDRO SIMULATIONS

- Small-scale (I comoving Mpc³) AMR radiation hydro simulation with Pop II+III star formation and feedback (1000 cm⁻³ threshold)
- Coupled radiative transfer (ray tracing: optically thin and thick regimes)
- 1800 M_☉ mass resolution, 0.1 pc maximal spatial resolution
- Self-consistent Population III to II transition at 10⁻⁴ Z_{\odot}
- Assume a Kroupa-like IMF for Pop III stars with mass-dependent luminosities, lifetimes, and endpoints.

$$f(\log M) = M^{-1.3} \exp\left[-\left(\frac{M_{\rm char}}{M}\right)^{-1.6}\right], \quad M_{\rm char} = 100 M_{\odot}$$

DWARF GALAXY BUILDUP

• The initial buildup of the dwarfs are regulated by prior Pop III stellar feedback and radiative feedback from nearby galaxies.

MASS-TO-LIGHT RATIOS

Scatter at low-mass caused by environment and different Pop III endpoints

MASS-TO-LIGHT RATIOS

Scatter at low-mass caused by environment and different Pop III endpoints

- Isolated halo (8e7
 M_☉) at z=7
- Quiet recent merger history
- Disky, not irregular
- Steady increase in
 [Z/H] then plateau
- No stars with [Z/H]
 -3 from Pop III
 metal enrichment

Most massive halo
 (10⁹ M_☉) at z=7

- Undergoing a major merger
- Bi-modal metallicity distribution function
- 2% of stars with [Z/H] < -3
- Induced SF makes
 less metal-poor stars
 formed near SN
 blastwaves

Figure 8. Left: Metallicity distribution as function of elliptical radius for the probable members of Sextans (squares with error-bars). The diamonds with error-bars show those stars whose velocities fall within the 3σ range of membership, but that are likely non-members based on their large MgIEW (> 0.5 Å). The small blue circle indicate the star with peculiar location on the CMD. Since the stars represented with the diamonds and the blue circle are likely non-members they will not be considered when deriving properties relative to Sextans. The red asterisks connected by a solid line represent a running median over 15 stars (except for the last point, which is over 9 stars. Right: Metallicity distribution for Sextans members (from the squares in right-handside panel).

VARYING THE SUBGRID MODELS

$M_{char} = 40 M_{\odot}$	No H ₂ cooling
$Z_{crit} = 10^{-5} \text{ and } 10^{-6} Z_{\odot}$	No Pop III SF
Redshift dependent Lyman-Werner background (LWB)	Supersonic streaming velocities
LWB + Metal cooling	LWB + Metal cooling + enhanced metal ejecta (y=0.025)

LWB + Metal cooling + radiation pressure

NEGLECTING M < 10⁸ M_o HALOS

- No stellar feedback in M < 10⁸ M_{\odot} halos \rightarrow f_{gas} = Ω_b / Ω_m
- High-z halos are too gas-rich, leading to an overproduction of stellar mass and SFR in low-mass, high-z galaxies.

BASELINE AT Z = 8.1

Main Limitation: Lacking physics

mainly Metal cooling Soft UV background

H2 COOLING BUT NO POP III

Similar subgrid model as typical galaxy formation simulations

Flat metallicity distribution function, arising from selfenrichment.

Doesn't match z = 0dwarfs

+ METAL COOLING & SOFT UVB

Typical overcooling problem during the initial starburst at M ~ 10⁸ M_o

Causing overenrichment – nearly solar metallicities. Doesn't match with z = 0 dwarfs

SOFT UVB + METAL COOLING + RAD. PRESSURE

CONCLUSIONS

- Radiative and chemical feedback plays an important role in the formation of the first galaxies and starting reionization
- Population III stars enrich the IGM and dwarf galaxies up to 10-³Z_☉, providing a metallicity floor for halo and dSph stars and DLAs.
- Differing Population III stellar feedback can cause a scatter in M/L up to a factor of 30 at a fixed DM mass.
- Radiation pressure (in addition to photo-heating) may regulate star formation as well as drive galactic outflows.
- Even the smallest galaxies are complex with star formation and feedback, and these sophisticated galaxy models will aid in the interpretation of future observations.