

4MOST – 4m Multi-Object Spectroscopic Telescope

Roelof de Jong (AIP) 4MOST PI

Wide-field, high-multiplex optical spectroscopic survey facility for ESO

- Status:
 - Project approved by ESO, preliminary design phase starts fall 2014
- Science:
 - Cosmology, galaxy evolution, high-energy and Galactic science
 - Complement all-sky space missions: Gaia, eROSITA, Euclid
 - Complement ground-based surveys: VISTA, VST, DES, LSST, SKA, etc.
- Survey facility:
 - Instrument, science operations, data products, science
 - Run all-sky public surveys in parallel, starting in 2019 with yearly data releases
 - Key surveys organized by consortium in coordination with community
 - Add-on surveys from community through ESO peer-reviewed applications
- Instrument specifications:
 - Very high multiplex: ~1600 fibres to R~5000 + 800 fibres R~20,000 in parallel
 - Wavelength range: LR: 390-930 nm, HR: 395-456.5 & 587-673 nm
 - Large field-of-view on VISTA, 4m-class telescope: Ø=2.5°

High-energy sky eROSITA

Galactic Archeology Gaia

Main science drivers A 5 year 4MOST survey provides

- Euclid/LSST/SKA (and other surveys) complement:
 - Dark Energy & Dark Matter
 - Galaxy evolution
 - Transients
 - >13 ×10⁶ spectra of m_V~20-22.5 mag LRGs & ELGs
- **eROSITA** complement:
 - Cosmology with x-ray clusters to z~0.8
 - X-ray AGN/galaxy evolution and cosmology to z~5
 - Galactic X-ray sources, resolving the Galactic edge
 - 2 ×10⁶ spectra of AGN and galaxies in 50,000 clusters
- Gaia complement:
 - Chemo-dynamics of the Milky Way
 - Stellar radial velocities, parameters and abundances
 - 13 ×10⁶ spectra @ R~5000 of m_V ~15-20 mag stars
 - 2 ×10⁶ spectra @ R~20,000 of m_V ~14-16 mag stars

+ ~15 million spectra for community proposals

4MOST is a general purpose spectroscopic survey facility serving many astrophysical communities

4MOST BAO + RSD (>12M objects)

- Concentrate on redshifts z<~1, maximize area to increase number of targets by going less deep
- Complement Euclid in redshift range and by providing redshifts of lensing populations

- Full combination including cross-correlations using same sky
- Same-sky benefit substantial: x4 for DE, x2 for MG vs different skys
- For 15,000 deg² LSST+4MOST FOM=54 (DE), 383 (MG)

(Kirk, Private Communication)

- German Russian mission
- 0.5 –10 keV, beam ~25"
- 8x all sky survey (4 year) + 3 years pointed observations
- Sky divided in two, German and Russian half
- Launch 2015
- Mission goals:
 - Dark Matter and Energy, growth of structure
 - X-ray detection of 100000 galaxy clusters
 - X-ray detection of 3 million point sources (AGN and Galactic)
 - Spectroscopic follow-up needed!

Cosmological constraints by obtaining redshifts and velocity dispersions of galaxy clusters

*** *** **

Gaia needs spectroscopic follow-up to achieve its full potential

4MOST extents the Gaia volume by 1000x in the red and 1 million in the blue!

Cover the bulge/halo interaction and the Magellanic Clouds

Testing cosmology with Milky Way dynamics

- Obtaining R~5000 spectra of >10⁶ stars at |b|>30° allows us to:
 - Determine the Milky Way 3D potential from streams to ~100kpc
 - Measure the effect of baryons:
 - has there been significant adiabatic contraction?
 - is there a disk-like DM component?
 - does the DM respond to the bar?
 - Determine the mass spectrum of Dark Matter halo substructure by the kinematic effects on cold streams of $10^3-10^5 M_{\odot}$

Milky way bar creates moving groups in velocity distribution

HR: Abundances, chemical clocks

Element	Number of lines	[X/H]	σ	
Na I	2	-3.13	0.03	
Mg I	1	-2.55		
ALI	1	-2.99		
Si I	2	-2.42	0.20	
Cal	13	-2.60	0.04	
Sc II	4	-3.11	0.20	
Ti I/Ti II	15/19	-2.58/-2.57	0.08/0.07	
VI	3	-2.96	0.02	
Cr I	3	-2.97	0.05	
Mn I/Mn II	7/1	-3.00/-2.93	0.05	
Fe I/Fe II	63/4	-2.99/-2.84	0.07/0.11	
Co I	4	-3.06	0.07	
Ni I	4	-2.88	0.10	
Sr II	1	-3.08		
ΥII	1	-3.08		
Zr II	2	-2.81	0.29	
Ba II	2	-3.02	0.07	
La II	5	-2.92	0.23	
Nd II	1	-2.93		
🖕 Eu II	1	-3.11		

AIP

- HR wavebands chosen to sample all the major nucleosynthesis channels:
 - light elements
 - α-elements
 - iron-peak elements
 - r-process element
 - heavy and light s-process elements
 - odd Z elements (Na, Al)
- Expected uncertainties between 0.1 and 0.2 dex (Caffau et al. 2013)
- Elements have different enrichment time scales depending on their origin
- Unlike ISM, stars maintain history

<u>Roelof de Jong | 4MOST</u>

HR: Milky Way halo

- Observe ~100,000 halo stars with HR spectrograph
- Metallicity distribution function
 - Constraints on Pop III stars (IMF, rotation)
- Chemo-dynamical substructure
 - Identify stream of tidally disrupted dwarfs
 - Early chemical enrichment of streams (depends on a few stars)
 - Accreted versus in situ formation
- Include LMC & SMC + stream

Milky Way bulge chemo-dynamics

Two formation scenarios:

- Collapse/merging of proto-galaxies
- Bar instability, disk buckling
- Observe ~150,000 giants, covering inner 1.5 kpc of the Milky Way
- Full coverage to understand effects of reddening and substructure
- Bulge-halo-thick disk connection?
- Search for chemo-dynamical substructures

- CoRoT+PLATO complement
- Masses and luminosity/distance can be derived with seismology of Red Giants
- Main uncertainty is metallicity dependence
- CoRoT fields currently being observed by Gaia-ESO
- PLATO is at the bright end for 4MOST
 - Dedicated repeat survey might help find most promising candidates
 - Can also characterize brown dwarfs, but may have to improve velocity calibration

Other Science feasible with surveys with thousands to millions of objects

- Follow-up of LSST and Euclid variables/transients
- Nature of radio galaxies from SKA
- Support Euclid photometric redshift calibrations (for z<0.7 and measuring intrinsic alignment galaxies)
- Redshifts of Euclid strong galaxy lensing candidates
- Reverberation mapping of AGNs
- Galaxy evolution using HOD from redshift surveys to z~1.5
- Star formation history of the Milky Way from 100,000 White Dwarfs
- Ages of astro-seismology objects from e.g. CoRoT, PLATO
- Nature of peculiar variable stars discovered by Gaia, LSST, Euclid
- Chemo-dynamics of Magellanic Clouds and other satellites
- High resolution spectroscopy survey of Open Clusters
- Radial velocities time series of low mass binary systems
 - Insert your idea here

Science Requirements

- 4MOST shall be able to obtain:
 - <u>Redshifts</u> of AGN and galaxies (also in clusters)
 - R~500 spectra of 22 r-mag targets with S/N=5 with >3 targets in Ø=2'
 - <u>Radial velocities</u> of ≤2 km/s accuracy and
 - <u>Stellar parameters</u> of <0.15 dex accuracy of any Gaia star
 - R~5000 spectra of 19.5 r-mag stars with S/N=10 per Ångström
 - Abundances of up to 15 chemical elements
 - R~20000 spectra of 15.5 r-mag stars with S/N=140 per Ångström
- In a 5 year survey 4MOST shall obtain:
 - 15 (goal 30) million targets at R~5000
 - 1.0 (goal 3.0) million targets at R~20,000
 - 16,000 (goal 23,000) degree² area on the sky at least two times

Instrument Specification

AIP		
	Specification	Concept Design value
	Field-of-View (hexagon)	>4.0 degree ² (ø>2.5°)
	Multiplex fiber positioner	~2400
	Medium Resolution Spectrographs # Fibres Passband Velocity accuracy High Resolution Spectrograph # Fibres Passband Velocity accuracy	R~5000-8000 1600 fibres 390-930 nm < 2 km/s R~20,000 800 fibres 395-456.5 & 587-673 nm < 1 km/s
	# of fibers in Ø=2' circle	>3
	Area (5 year survey)	>2h x 16,000 deg ²
	Number of 20 min science spectra (5 year)	~100 million

Wide-field Corrector can be inserted into VISTA like IR camera

Wide-field corrector VISTA Ø=2.5° includes an ADC AIP

Ø 0 0

IoA Cambridge, King, Parry, Sun, et al.

Echidna style positioner

- About
 Large
 enable
- FMOS Echidna on Subaru

- About 2400 fibres
 - Large, overlapping patrol areas enables sparse fibres for high resolution spectrograph
- Pitch ~10 mm, Patrol R: ~1.2x pitch
- Closest separation ~10 arcsec
- Reconfiguration time <2 min
 - `o∧o∧o/ `<u>`</u> 0 $\sim \sim \sim$ ्रि 0 0 0/0/0/0/0/0 No o 0 /0 0 0/ 0/ 0/ 0/ 0 <u>ک</u> х́о 0 0/0/0/0/0/0 0 XO 0/0/0/0/0/0/0/0 0 0/0/0/0/0/0 0 0 0 AAO, Saunders et al.

Spectrograph location and fibre routing

Low- and High-Res Spectrographs

- Fixed configuration spectrographs, high throughput with VPH gratings
- Two R~5000 spectrographs similar to WEAVE design
- Two dedicated R~20,000 spectrographs for ~800 fibers
- Two arm spectrographs, one (HR) or two (LR) 3k x 8k CCDs per arm

NOVA/ASTRON & RAL/Oxford (WEAVE), LSW van der Pragt, Navaro, Dalton, Middleton, Seifert

GEPI, Paris, Mignot, Cohen, Bonifacio et al.

AIP

Spectrograph optimisation

- Optimisation on spectrographs in progress. Goals:
 - Reduce costs
 - Increase performance
 - Consider LR HR switchable designs, other wavelength regions
- 3-arm designs with 6k x 6k or 4k x 4k detectors

How are we going to run 4MOST?

- 4MOST program defined by *Public Surveys* of 5 years
- Surveys will be defined by *Consortium* and *Community*
- All Surveys will run in parallel
 - Surveys share fibres per exposure for increased efficiency
- Key Surveys will define observing strategy
 - Millions of targets all sky
- Add-on Surveys for smaller surveys
 - Small fraction fibers all sky
 - Dedicated small area
 - -10^3 to 10^6 targets

How are we going to run 4MOST?

- Consortium Surveys will ensure whole hemisphere covered with at least ~120 minutes total exposure time
- Each exposure 20 minutes, repeats possible
- Total exposures times per target between 20 and 120 min (and more) possible
- Areas with more targets visited more than 120 min

Science verification with full 4MOST simulator: Design Reference Surveys

AIP Surveys implemented with more than 40M objects:

(coordination C. Chiappini)

- Milky Way halo R>5000 (~3M objects) A. Helmi; M. Irwin
 - Chemo-dynamics streams
- Milky Way halo R>20,000 (~ 0.2M objects) N. Christlieb
 - Chemical evolution of accreted components
- Milky Way disks/bulge R>5000 (~15M objects) A. Koch; I. Minchev
 - Chemo-dynamics of bulge/disks
- Milky Way disks/bulge R>20,000 (~2.5M objects) E. Caffau
 - Chemical evolution in situ components
- eROSITA galaxy clusters (~50,000 clusters, ~2.5M objects) H. Boehringer
 - Dark Energy and galaxy evolutions
- eROSITA AGN (~1M objects) A. Merloni
 - Evolution of AGN and the connection to their host galaxies
- Fundamental cosmology science (~23M objects) F. Kitaura

Luminous red and blue galaxies survey

AIP

Simulate throughput, fibre assignment, survey strategy and verify total survey quality

ong

MPE, Garching, Boller, Dwelly et al. GEPI, Paris, Sartoretti et al. IoA, Cambridge, Gonzalez-Solares et al.

2000 Coordinates Hammer Ait off Projection

Survey Progress after night number: 0000

	Science case	S/N per Å	r _{AB} - mags	Targets (Millions)	
	MW halo HR	140	12–15.5	0.07	
	MW halo LR	10	16–20.0	1.5	
	MW disk/bulge HR	140	14–15.5	2.1	
	MW disk/bulge LR	10–30	14–18.5	10.7	
	X-ray galaxy clusters	4	18–22.0	1.4	
	X-ray AGN	4	18–22.0	0.7	
_	BAO+RSD galaxies	4	20–22.5	12.8	
Λ	Total			>29	

Return on investment (TBC)

- First 5 year 4MOST survey:
 - 70% fibre hours for 4MOST consortium
 - 20% fibre hours for community
 - 10% fibre hours for Chile

- Second 5 year survey:
 - 30% fibre hours for 4MOST
 - 60% fibre hours community
 - 10% fibre hours for Chile
- Consortium surveys will have PIs based on institute interests
 - size will be approximate proportional to contribution (hardware, facility labor, science labor of broad interest: targeting, pipelines,)
- Consortium members can participate in all surveys
 - number of people within factor 2 proportional to contribution
 - Special limits for Australia as non-ESO partner probably required
- Community and Chile surveys are selected by Peer Review
- Considering fraction Community participation in Consortium

Data release and publication policies

- All raw data immediately public
- All 1D spectra immediately available to all surveys
- 1D spectra released to external public in yearly DRs
- Higher level data products as agreed between individual surveys and ESO, probably yearly data releases after 1-1.5 yr
- Publication policies similar to Sloan
 - First announce science project and papers
 - "Builders" (both facility and survey) have opt-in option on papers
 - Surveys can have additional rules

Valid for both Consortium and Community surveys

AIP

Schedule and Milestones

• Feb 20	13:	Given Planned # Pred Duration cessor	e Expected Start	2011 09 10 11	12 01 02	2012 03 04 05	06 07 08 09
	nceptual Design	completed	1/9/11 5/9/11				· · · · · ·
• Jun 20 ⁻	1.3 ments		12/9/11 12/9/11		7	- ·	Phase A
Determine oper	ational constraints	s a days nt concept	t optimizatio	n phase (new	partners?)		
Implement basic Prepare require	c survey simulator	58 days	12/9/11 12/9/11			_	
Definition Revie	w Meeting	2 days				-	
• Jun 207 Refine survey si	TD. mulator	60 days	5/12/11			7	
Define b Pre Refine sub-com	liminary Design I	Review, a	Il concepts t	ested, evaluat	ed, and costed	- -	Phase B
• Jun 20 ⁻	16 positioner and spectrograph w documents					-	
	al/Critical Design	Review,	detailed des	gns finalized		. <u>-</u> .	Phase C
• Jun 20 ⁻	18:						
Complete select	subsystems man	ufactured	, assembled	, integrated ar	d verified	٦	
• Mar 20	performance and operations documents						
Consolidation Ph	system integrate	ed and ve	rified at AIP.	preliminary a	cceptance Euro	pe	Phase D
• Oct 201	leliver review documents	45 days Q1 Q2 Q3	2/7/12 Q4 Q1 Q2 Q3	Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1 Q	12 Q3 Q4 Q1 Q2	Q3 Q4 Q1 Q2 Q3 Q4
Selection and De	liverv and installa	tion at tel	escope, prel	iminary accep	tance Chili		
Concept Design Preliminary Design	280 days 579/11 195 days 1/10/12						
Dec 20	19 – ¹⁹⁵ days 1/7/13						
System Integration a	t science survey of	4MOST ab	out 30% of tar	aets determined	by community su		Phase E
1 110					Sy commany ou		
			Roelof de	Jong 4MOS	ST		

AIP

4MOST Collaboration

- Instrument Institutes
 - Leibniz-Institut f
 ür Astrophysik Potsdam (AIP) (D)
 - Zentrum für Astronomie, Univ. of Heidelberg (D)
 - Australian Astronomical Observatory (AU)
 - NOVA, Dwingeloo (NL)
 - MPI für Extraterrestrische Physik, München (D)
 - Institute of Astronomy, Cambridge University (UK)
 - ESO, Garching (EU)
- Science Institutes
 - University of Lund (S)
 - University of Uppsala (S)
 - University of Groningen (NL)
 - Rutherford Appleton Laboratory, Oxford (UK)
 - Ludwig-Maximilian Universität, München (D)
 - L'Observatoire de Paris, GEPI, Paris (F)

Lund

Dbservatoire GEPI

RAL Space

rijksuniversiteit

AIP

groningen

UPPSALA UNIVERSITET

ASTRON

UNIVERSITY OF CAMBRIDGE

Wide-field, high-multiplex optical spectroscopic survey facility for ESO

- Status:
 - Project approved by ESO, preliminary design phase starts 2014
- Science:
 - Cosmology, galaxy evolution, high-energy and Galactic science
 - Complement all-sky space missions: Gaia, eROSITA, Euclid
 - Complement ground-based surveys: VISTA, VST, DES, LSST, SKA, etc.
- Survey facility:
 - Instrument, operations, data products, science
 - Run all-sky public surveys in parallel, starting in 2019 with yearly data releases
 - Key surveys organized by consortium in coordination with community
 - Add-on surveys from community through ESO peer-reviewed applications
- Instrument specifications:
 - Very high multiplex: ~1600 fibres to R~5000 + 800 fibres R~20,000 in parallel
 - Wavelength range: LR: 390-930 nm, HR: 395-456.5 & 587-673 nm
 - Large field-of-view on VISTA, 4m-class telescope: Ø=2.5°

HR: Milky Way disks

- Inside-out formation time scales and chemical evolution
- Importance of radial migration by bars/spiral structure
- Thick disk formation scenarios:

- In situ formation from chaotic gas accretion at high redshift
- Remnants of accreted satellites
- Thin disk heating (satellites, dark matter halos, secular evolution)
- Use "chemical tagging" to link stellar populations of similar origin
 Stars from same star cluster (age) have same chemical signature
- Even distribution in R and Z using ~ 1.5 million stars

HR: Binary stars contamination/opportunities

- Gaia / LSST will identify many binaries
 - Spatial resolved
 - Astrometric binaries (primary or both components)
 - Photometric properties (colour-colour or colour-magnitude outliers)
 - Eclipsing or tidal deformation variations
 - Spectroscopic multi-component
 - Spectroscopic radial velocity variations
- For Milky Way structure studies select against binaries or remove post facto
- Create large samples of well studied spectroscopic binaries:
 - Add velocities to eclipsing binaries constrains orbits, masses, radii
 - Add velocities to astrometric binaries constrains orbits
- Gaia and LSST will identify millions of eclipsing binaries!
- Cataclysmic and eruptive binaries could also be targets