ATLAS search for Lyman Limit Systems in quasar pairs

With Joe Hennawi, Tom Theuns, Rob Perry et many others & the ATLAS team?

Michele Fumagalli

Durham University Carnegie Observatories Why Lyman Limit Systems? And why quasar pairs?

The goal: gas around galaxies

The circumgalactic medium encodes the echos of two key processes for gas evolution: gas inflows and outflows

The goal: gas around galaxies

The circumgalactic medium encodes the echos of two key processes for gas evolution: gas inflows and outflows

The goal: gas around galaxies

The circumgalactic medium encodes the echos of two key processes for gas evolution: gas inflows and outflows

CGM, Absorption Lines, and LLS

Absorption lines offer a powerful tool to investigate the properties of the CGM, and in particular LLSs

MF et al. 2011,2014

CGM, Absorption Lines, and LLS

Absorption lines offer a powerful tool to investigate the properties of the CGM, and in particular LLSs

CGM, Absorption Lines, and LLS

Absorption lines offer a powerful tool to investigate the properties of the CGM, and in particular LLSs

Ok, but why quasar pairs?

Our knowledge of the distribution of optically thick gas around z~2-3 galaxies is limited by the number of quasar/galaxy pairs

Ok, but why quasar pairs?

It would be easier to observe brighter quasars!

The LLS autocorrelation function measured along quasar pairs is an effective way to map gas around galaxies

Redshift

1-halo term: R < R_{сдм} P (LLS,LLS) ~ fc

The LLS autocorrelation function measured along quasar pairs is an effective way to map gas around galaxies

Redshift

The LLS autocorrelation function measured along quasar pairs is an effective way to map gas around galaxies

Projected Separation

Redshift

Currently, we are limited by sky coverage to search for QSO pairs

Currently, we are limited by sky coverage to search for QSO pairs

Separation of ~ $8'' \sim 65$ kpc at z ~ 3

Provided bright enough quasars, we can study the projected velocities within the CGM of distant galaxies

Currently, we are limited by sky coverage to search for QSO pairs

Quasar	RA	DEC	$z_{b/g}$	$z_{f/g}$	R_{com}	$g_{b/g}$	$g_{f/g}$
SDSSJ1254+2235A	12:54:19.054	+22:35:35.96	3.6489	3.6489	55.6	21.69	20.73
BOSSJ1400+3134A	14:00:12.769	+31:34:54.14	3.3230	3.3150	58.9	20.31	19.84
BOSSJ1053+5001A	10:53:20.042	+50:01:47.85	3.0780	3.0500	67.3	21.04	21.18
BOSSJ1240+4329A	12:40:25.150	+43:29:16.53	3.2639	3.2490	104.3	21.06	20.57
BOSSJ0953+5249A	09:53:07.604	+52:49:54.03	4.2830	4.2709	194.4	21.89	22.80
BOSSJ1541+2702A	15:41:10.401	+27:02:31.26	3.6320	3.6210	222.7	21.62	21.51
BOSSJ1420+2831A	14:20:23.772	+28:31:06.59	4.3049	4.2900	405.7	22.22	23.04
BOSSJ1000+4421A	10:00:26.730	+44:21:03.65	2.9879	2.9820	311.2	20.82	21.22
BOSSJ1251+2715A	12:51:22.737	+27:15:23.61	3.6700	3.6400	487.5	21.82	21.31
BOSSJ1116+4118A	11:16:10.682	+41:18:14.45	3.0039	2.9430	439.0	19.47	18.55
APOJ0956+2643A	09:56:25.920	+26:43:21.67	3.0829	3.0820	537.4	20.84	19.50
BOSSJ1451+3913A	14:51:20.652	+39:13:50.52	3.3840	3.2539	590.3	20.85	22.11
BOSSJ1006+2607A	10:06:09.761	+26:07:32.47	3.0220	2.9610	740.7	20.54	20.81
APOJ1431+3427A	14:31:05.486	+34:27:16.98	4.5760	4.2890	1073.0	24.39	22.55
APOJ1614+2510A	16:14:08.454	+25:10:36.79	3.3269	3.0309	822.5	20.95	20.09
BOSSJ0927+4507A	09:27:04.277	+45:07:15.74	3.5960	3.5820	1027.3	22.43	21.19
BOSSJ1039+5026A	10:39:00.013	+50:26:52.83	3.2370	3.1324	964.3	20.60	19.52
BOSSJ1414+3955A	14:14:04.157	+39:55:43.55	3.2149	3.1700	1012.6	18.73	21.31
BOSSJ1150+4659A	11:50:52.353	+46:59:39.42	3.0000	2.9879	1117.5	21.25	20.61
APOJ1026+4614A	10:26:16.115	+46:14:20.83	3.4210	3.3340	1250.0	20.50	20.20
BOSSJ1011+5739A	10:11:11.845	+57:39:12.59	3.1340	3.1329	1266.9	21.27	20.07
BOSSJ1427+5246A	14:27:23.595	+52:46:32.05	3.8740	3.7470	1519.6	21.62	23.01
BOSSJ0829+2927A	08:29:07.713	+29:27:54.73	3.0699	3.0330	1298.0	21.12	21.29
BOSSJ1117+6339A	11:17:16.657	+63:39:31.02	3.0130	2.9679	1331.4	21.45	19.87
BOSSJ1024+5303A	10:24:26.398	+53:03:08.53	3.3590	3.2070	1416.4	20.57	21.02
BOSSJ2307+2508A	23:07:49.107	+25:08:05.64	3.0720	3.0530	1365.4	20.92	20.36
BOSSJ0823+4138A	08:23:55.814	+41:38:10.19	3.0160	2.9010	1311.9	21.70	19.57
BOSSJ1546+5134A	15:46:10.541	+51:34:29.44	2.9340	2.9300	1341.0	20.53	19.43
BOSSJ1239+3613A	12:39:37.161	+36:13:22.00	3.2179	3.1150	1418.3	21.85	19.85
SDSSJ1330+6234A	13:30:45.223	+62:34:12.62	3.5260	3.4502	1568.2	20.77	21.20
BOSSJ1138+3505A	11:38:12.309	+35:05:59.71	3.1800	3.1610	1499.7	21.57	20.82
DOCC 11196 + 4414A	11.96.94 040	1 44.14.59 74	9 1 0 0 0	9 1050	1407 0	00.07	91 60

More pairs, please!

And how about triplets?

Sometimes, we stumble upon unexpected rarities

Farina et al. 2013