Galaxy and Mass Assembly (GAMA): LF Evolution, bivariate brightness distribution and luminosity-size relation

Jon Loveday University of Sussex

Outline

- Quick GAMA summary
- Luminosity function
 - Joint stepwise maximum likelihood method
 - Luminosity function and evolution by Sersic type
- Multivariate distribution functions
 - Bivariate brightness distribution (BBD)
 - Luminosity-size relation
 - Evolution with redshift
- Summary

All results here are preliminary! Assume h = 1

GAMA-II

- Four 12 x 5 deg fields to SDSS
 r = 19.8: G09, G12, G15, G23
- Target density ~1000/deg²
- Fully automated redshifts
- Equatorial regions (G09, G12, G1 now complete:
 - 183,010 galaxies with reliable redshifts (96.7% success rate
 - Mean redshift z = 0.23
- Derived parameters: stellar mass groups, environment
- Matched-aperture photometry GALEX-SDSS-UKIDSS

www.gama-survey.org

Luminosity function, radial density and evolution

- Use Cole (2011) joint stepwise maximum likelihood (JSWML) method
- Radial density fluctuations $\Delta(z_i)$ and LF iteratively solved by maximising

$$\mathcal{L} = \Pi_{\alpha} p_{\alpha}, \qquad p_{\alpha} = \frac{\Delta(z_{\alpha}) \frac{\mathrm{d}V(z_{\alpha})}{\mathrm{d}z} \phi(L_{\alpha})}{\int \Delta(z) \frac{\mathrm{d}V}{\mathrm{d}z} \int_{L^{\min}(z)}^{\infty} \phi(L) \,\mathrm{d}L \,\mathrm{d}z}$$

- $\Delta(z_i) \rightarrow \text{density-corrected } V_{\max} \text{ for each galaxy} \rightarrow \text{LF } \Phi(M_j)$
- Luminosity (Q) and density (P) evolution parametrized by (Lin et al 1999)
 - $M_c(z) = M + Qz$
 - $\Phi^*(z) = \Phi^*(0) \times 10^{0.4Pz}$
- Cole derived iterative method for finding *P*, $\Delta(z_i)$, $\Phi(M_j)$ given assumed *Q*, motivated by generating random catalogues for clustering

Issues

- 1. Cole (2011) iterative solution includes factor *d* In ϕ^*/dP which is independent of *P* for chosen form of density evolution
- 2. As lum evolution parameter Q varies:
 - V_{max} needs to be recalculated for all galaxies very slow
 - Absolute magnitudes shift need careful binning to conserve galaxy number and have no empty mag bins (likelihood includes ln ϕ_j)
- Partially resolved by:
 - 1. Searching over both P, Q
 - 2. Maximising geometric mean probability rather than likelihood, or by minimising χ^2 from $\Delta(z_i)$ and between LFs measured in redshift slices
- Fit for Δ(z_i), Q, P using SDSS r-band Petrosian magnitude (GAMA selection band); K-corrections from SED fits using KCORRECT
- For subsequent multivariate distributions, keep Q, P fixed, fitting only for Δ(z_i) and Φ(M_j)

GAMA-II *r*-band LF split by colour

GAMA-II r-band LF split by colour

- Consistent with Loveday+ 2012
- (STY evolving Schechter fn plus SWML in redshift slices)

Multivariate distribution functions

- Always have SDSS Petrosian *r*-band magnitude as a parameter
- Other parameters:
 - Sersic *r*-band 10 *R*_e magnitude and effective surface brightness
 - Circularised effective radius
- Advantages of Sersic over Petrosian (Kelvin+ 2012):
 - Elliptical apertures
 - Seeing corrected
 - Larger fraction of flux measured
- Incompleteness corrections follow Loveday+ 2012:
 - Imaging (Petrosian SB, Blanton+ 2005)
 - Redshift (fibre mag)
- All errors from jackknife sampling

Bivariate brightness distribution (BBD)

- Sersic BBD much broader than Petrosian
- NB imaging completeness correction > ×2 for $\mu_r \gtrsim 23$ mag arcsec⁻²

BBD sliced by magnitude

BBD Gaussian fit parameters

- Sersic BBD broader than Petro, but narrower than Driver+ 2005
- Shows maximum SB $\mu_r \approx 20$ mag arcsec⁻² at $M_r \approx -21$ mag
- Petro SB of most compact galaxies underestimated by seeing?
- For lum-size relation, we just show Sersic parameter results

Luminosity-size relation by Sersic index

Luminosity-size relation sliced by magnitude

- Blue red size difference larger at low luminosities
- Offset wrt Shen+ 2003 results in same sense as discrepancy with Driver+ 2005
- Shen+ early-type relation only measured for $M_r 5 \lg 0.7 < -19$)

Summary

- *r*-band LF fit simultaneously with radial overdensity and evolution parameters
- BBD not well fit by Choloniewski function
 - SB peaks at μ_e = 20 mag arcsec^{-2} for ${\sim}L^*$ galaxies
 - SB distribution broadens at fainter luminosities
- (e-corrected) luminosity-size distribution:
 - No sig evolution for late-type galaxies
 - Early-types grow by ~5% since $z \sim 0.2$
- Future work:
 - Use VST KIDS imaging
 - More reliable size measurements
 - Readdress SDSS imaging completeness
 - Interpolate radius to fixed restframe band
 - Investigate environmental dependence
 - Use SPS model fits to estimate individual lum evoln parameters Q

