

Constrain the Milky Way Mass Profile with Phase Space Distribution of Satellite Galaxies^[1]

Zhaozhou Li (Shanghai Jiao Tong University) lizz@sjtu.edu.cn Yong-Zhong Qian, Jiaxin Han, Wenting Wang, Ting Li, Y. P. Jing

Context

- The mass profile of the Milky Way (MW) outer halo is important but not well constrained yet
- Dwarf satellite galaxies are the best tracers for the MW outer halo
 - The only tracers for r > 100 kpc or farther
- Information from simulations can bypass the model dependence in conventional methods.

Method

- Assumptions
 - Spherical NFW potential for outer halo
 - Steady-state for satellite population
 - Similarity of halo dynamics though scaling with NFW characteristic scales $r_{\rm s}$, $v_{\rm s}$

Any deviation to above \Rightarrow systematics <10%

Build Empirical Model for 6D phase-space Distribution Function (DF) of satellites from simulation through scaling relation

$$p(\boldsymbol{r}, \boldsymbol{v} | \boldsymbol{M}, \boldsymbol{c}) = \frac{1}{r_{\rm s}^3 v_{\rm s}^3} \tilde{f}\left(\frac{E}{v_{\rm s}^2}, \frac{L}{r_{\rm s} v_{\rm s}}\right)$$

M: virial mass M_{200c} *c* : concentration

• Infer *M* & *c* from observations

$$p(M, c | \{w\}) \propto \left[\prod_{i=1}^{n_{\text{sat}}} p(w_i | M, c)\right] \times p(c | M) p(M)$$

$$w \equiv (r, v) \qquad \text{prior information}$$

• Treat observational errors & selection function rigorously with Bayesian statistics

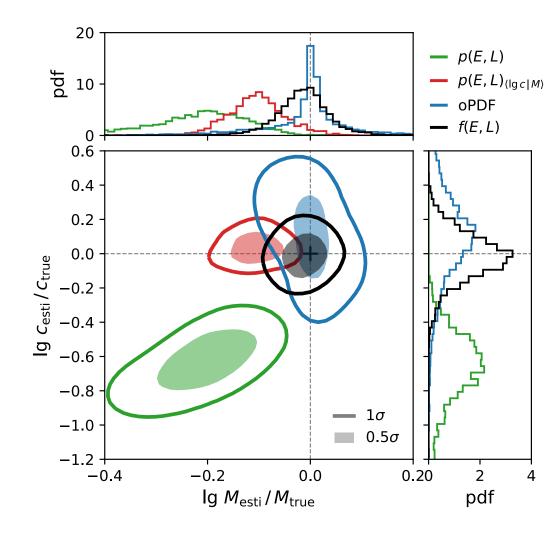
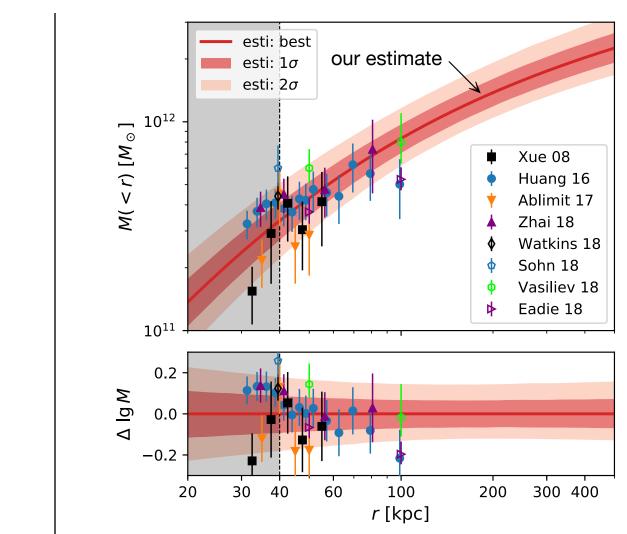
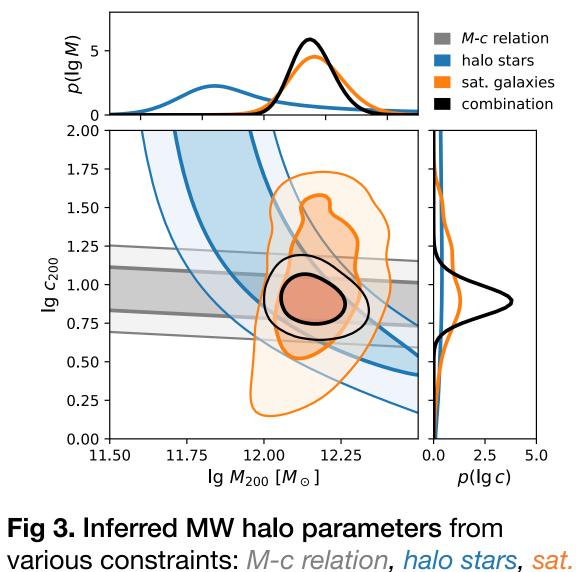



Fig 1. Performance test with mock sample. Our Fig 2. MW mass profile inferred from satellites method (*Black*)^[1] achieves better precision and kinematics (curve) is consistent with previous accuracy than methods merely based on Jeans measurements (symbols) from halo stars or theorem (*Blue*)^[2] or orbital distribution (*Red*)^[3]. globular clusters.

Result


- Data: 28 MW satellites within 40 to 280 kpc with 6D kinematics^[4] measured by Gaia.
- The inferred mass profile is consistent with previous measurements (Fig 2), and can be improved with other tracers, e.g. rotation curve of halo stars^[5] (**Fig 3**).
- Result is robust against changing sample selection criterion on luminosity or distance.

	Satellite Only		Satellite + Halo Star	
	flat prior	<i>M</i> - <i>c</i> relation	flat prior	<i>M</i> - <i>c</i> relation
М	$1.49^{+0.35}_{-0.28}$	$1.50^{+0.32}_{-0.26}$	$1.43^{+0.25}_{-0.22}$	$1.44^{+0.24}_{-0.21}$
С	$9.5^{+10.9}_{-5.1}$	$8.1^{+2.7}_{-2.0}$	$8.4^{+4.8}_{-3.1}$	$7.9^{+2.3}_{-1.8}$

 Table 1. Mass and concentration estimation
with different information used (see Fig 3). Consistent result is reported in each case.

galaxies, combination of all above.

Satellite galaxies \Rightarrow Halo mass Satellites + Stars ⇒ Concentration

Conclusion

Current **BEST** estimation to MW halo mass

- ✓ best tracer for outer halo: satellite galaxies
- ✓ best data available: 28 satellites with Gaia DR2 proper motion
- ✓ realistic model: empirical DF model from simulation with wide usage
- ✓ rigorous **statistics**: observational errors & selection function included

This method can also apply to any other galaxy groups/clusters.

References

- [1] Li et al. 2019, in preparation
- [2] Han et al. 2016, MNRAS, 456, 1003
- [3] Li et al. 2017, ApJ, 850, 116
- [4] Riley et al. 2018, arXiv:1810.10645
- [5] Huang et al. 2016, MNRAS, 463, 2623

