
A PAndAS cub in a stream – Andromeda XXVII and the North West Stream

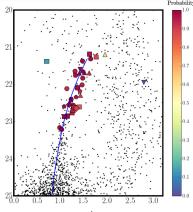
Janet Preston, University of Surrey, Guildford, Surrey, UK

Michelle Collins (University of Surrey), Rodrigo Ibata (Observatoire de Strasbourg), Erik Tollerud (Space Telescope Science Institute, Baltimore), R. Michael Rich (UCLA), Ana Bonaca (Harvard-Smithsonian Center for Astrophysics), Alan W. McConnachie (NRC Herzberg Institute of Astrophysics, Canada), Dougal Mackey (Australian National University, Canberra), Geraint F. Lewis (University of Sydney, Australia), Nicolas F. Martin (Observatoire de Strasbourg, Max-Planck-Institut für Astronomie), Jorge Peñarrubia (University of Edinburgh, UK), Scott C. Chapman (Dalhousie University, Canada)

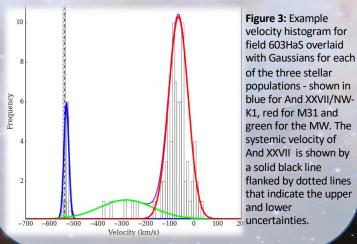
We present our analysis of 38 RGB stars in 7 fields spanning the centre of Andromeda XXVII (And XXVII) and the upper section of the NW stream (NW-K1).

And XXVII is a small, $r_h \sim 455$ pc, dSph galaxy lying ~ 86 kpc to the north-west of M31, with $M_v = -7.9$. It is co-located with NW-K1, which lies at a projected radius of 50-80 kpc from the centre of M31 and extends for $\sim 3^\circ$ on the sky, [1], see Figure 1.

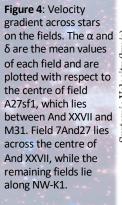
Figure 1: And XXVII and NW stream within the PAndAS footprint. Red dots = globular clusters. Blue ellipses = dwarf galaxies. Streams are outlined in green. Figure reproduced from [2]

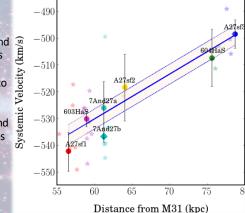

Approach

To determine if And XXVII and NW-K1 are associated we confirm members of their stellar populations and determine their systemic velocities, velocity dispersions and metallicities. We derive the probability of membership of And XXVII/NW-K1 based on proximity to a fiducial isochrone (P_{iso}) and radial velocity (P_{vel}), with the overall probability given by $P_{tot} = P_{iso} \times P_{vel}$ and $P_{to}t > 0.6$.


nd credit: NASA_FSA_the Bubble Heritage Team (STscI/AURA)_A_Nota (FSA/STScI)_ and the Westerlund 2 Science Team

We assess each star's probability of membership (P_{iso}) of And XXVII/NW-K1 based on their proximity to a fiducial isochrone, age = 12 Gyr, Fe/H = -1.7 and [α /H] = 0.0 from the Dartmouth Stellar Evolution database, [3], corrected for extinction and D_{Θ} = 827 kpc.





We then determine probability of membership based on velocity (Pvel). We fit Gaussians to the data in each field, see Figure 3, and use the posterior distribution to determine the likelihood of membership.

When we plot the systemic velocities from each field, we see (Figure 3) a velocity gradient of 1.7±0.3 kms⁻¹ kpc⁻¹ growing increasingly negative in the direction of M31.

We obtain the spectroscopic [Fe/H] of the stars using the equivalent widths of the Calcium Triplet lines. Our results, see Figure 4, show no discernible difference between stars in And XXVII and those in NW-K1.

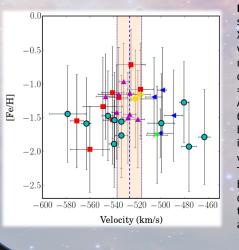


Figure 5: Metallicity vs stellar velocity for And XXVII/NW- K1 by field, where: red = A27sf1; magenta = 603HaS; cyan = 7And27; yellow = A27sf2; blue = A27sf3; green = 604HaS. The vertical. blue, dashed line indicates the systemic velocity of And XXVII. The shaded area, bounded by the blue dotted lines, indicates the uncertainties around this value

Key findings

- And XXVII: v = $-526.1 \pm 10 \text{ kms}^{-1}$; $\sigma_v = 27.0 \pm 4.0 \text{ kms}^{-1}$ and [Fe/H] = -2.1 ± 0.5 .
- NW-K1: <v> = -519.4 \pm 4.0 kms^-1; < σ_v > = 10.0 \pm 4.0 kms^-1 and <[Fe/H]> = -1.8 \pm 0.4.
- The velocity gradient is indicative of an infall trajectory towards M31

Conclusions

- The kinematic and spectroscopic properties of And XXVII and NW-K1 are consistent within 1- σ confidence limits, so it is likely that the two are associated.
- And XXVII is likely being tidally disrupted by M31, as evidenced by the unusually large value of σ_v for a dSph of this size.
- And XXVII is a plausible progenitor for NW-K1.
- The two sections of the NW stream are unlikely to be part of the same structure. Work by [4] finds an infall trajectory towards M31 in NW-K2. Given that both NW-K1 and NW-K2 lie behind M31, [5], it is unlikely that they are components of a single stellar structure around M31.

References

UNIVERSITY OF

SURREY

- [1] Richardson et al. 2011: ApJ, 732:76
- [2] McConnachie et al. 2018: ApJ , 868:55
- [3] Dotter et al. 2008: ApJ, 178:89
- [4] Veljanoski et al. 2013: ApJ, 768:L33
- [5] Komiyama et al, 2018: ApJ, 853:29