Antlia 2 The hidden giant

Vasily Belokurov Institute of Astronomy, Cambridge based on Torrealba et al. 2019

What controls the size of a (dwarf) galaxy?

based on: size-luminosity + abundance matching (both highly non-linear)

Kravtsov 2013

Stellar feedback?

Gaia, the halo explorer

- relatively bright magnitude limit, but
- no weather
- perfect star/galaxy separation
- artifact rejection
- whole sky
- uniform(ish) quality
- astrometry

Prediction

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 453, 541-560 (2015)

Advancing Astronomy and Geophysics

doi:10.1093/mnras/stv1622

Detection of satellite remnants in the Galactic halo with *Gaia*– III. Detection limits for ultrafaint dwarf galaxies

T. Antoja,¹*† C. Mateu,^{2,3} L. Aguilar,² F. Figueras,⁴ E. Antiche,⁴ F. Hernández-Pérez,³ A. G. A. Brown,⁵ O. Valenzuela,⁶ A. Aparicio,⁷ S. Hidalgo⁷ and H. Velázquez²

 "Our experiments suggest that Gaia will be able to detect UFDGs that are similar to some of the known UFDGs even if the limit of Gaia is around 2 mag brighter than that of SDSS, with the advantage of having a full-sky catalogue. We also see that Gaia could even find some UFDGs that have lower surface brightness than the SDSS limit"

Gaia DR2

Gaia's magic

New satellite revealed by RR Lyrae

- RR Lyrae with distances D > 70 kpc

Archival deeper DECam imaging

Distance to Antlia 2

Archival deeper DECam imaging

D=130 kpc

Size and luminosity

Spectroscopic Follow-up

3D motion + metallicity

Kinematics

Metallicity distribution

Mass-luminosity

Luminosity-density

Fluffy dwarfs

NFW

cored NFW

truncated NFW

3.0

 $\log_{10}[r_{\rm tide}/{\rm pc}]$

3.5

4.0

(predicted) Tidal debris

Stellar mass - metallicity

not too much tidal stripping?

Antlia 2 and the LMC

LMC changes Ant 2 orbit

Peri-centre shifts from 37 kpc to 27 kpc if massive LMC is included (Erkal & Belokurov 2019)

future orbit, past orbit, LMC orbit

Formation pathways?

- Strong feedback clues in SFH/MDF?
- Dwarf merging clues in SFH/MDF?
- Born cored clues anywhere?

Conclusions

- Gaia can detect super mega ultra diffuse galaxies
- There may be a (much) larger scatter in luminosity at fixed size than previously assumed
- Ant 2 is difficult to stuff into a cuspy halo
- Even a cored halo requires plenty of tidal stripping
- Giant clouds of tidal debris predicted
- Unclear if the cored halo is consistent with feedbackinduced conditions

Low surface brightness Universe

- Are And XIX, Cra 2 and Ant 2 the tip of the iceberg?
- If yes, our predictions for LSST detection efficiency (with resolved stelar pops) at large distances are too pessimistic
- Last week Gaia finished its 5 year-long mission... and started its second life, also 5 years long

The END

Property	Antlia 2 dwarf	Unit
α(J2000)	143.8868 ± 0.05	deg
δ(J2000)	-36.7673 ± 0.10	deg
l	264.8955 ± 0.05	deg
b	11.2479 ± 0.10	deg
(m-M)	20.6 ± 0.11	mag
D_{\odot}	132 ± 6	kpc
$r_{ m h}$	1.27 ± 0.12	deg
<i>r</i> _h	2920 ± 311	pc
1 - b/a	0.38 ± 0.08	
PA	156 ± 6	deg
M_V	-9.03 ± 0.15	mag
$\langle \mu \rangle (r < r_{\rm h})$	31.9 ± 0.3	mag arcsec $^{-2}$
[Fe/H]	-1.36 ± 0.04	dex
$\sigma_{ m [Fe/H]}$	$0.57~\pm~0.03$	dex
rvhelio	290.7 ± 0.5	$\mathrm{km}\mathrm{s}^{-1}$
rv _{gsr}	64.3 ± 0.5^{b}	$\mathrm{km}\mathrm{s}^{-1}$
σ_{rv}	5.71 ± 1.08	$\rm kms^{-1}$
$\mu_{\alpha}\cos\delta$	-0.095 ± 0.018^{a}	$ m masyr^{-1}$
μ_{δ}	0.058 ± 0.024^{a}	$mas yr^{-1}$
$M(r < r_{\rm h})$	5.5 ± 2.2	$10^7{ m M}_{\odot}$
$M(r < 1.8r_{\rm h})$	13.7 ± 5.4	$10^7{ m M}_{\odot}$
M_{\star}	8.8 ± 1.2	$10^5{ m M}_{\odot}$
M/L_V	315 ± 130	M_{\odot}/L_{\odot}

 Table 1. Properties of the Antlia 2 dwarf.

^aDoes not consider systematic uncertainties (see text).

^bDoes not consider LSR uncertainties.