Probing ACDM with "dark" galaxies

- Alejandro Benítez-Llambay -

Alejandro Benítez-Llambay

The Standard Model of Cosmology

Planck Collaboration (2016)

Give us the framework to construct a model of the evolution of the Universe, assuming that the main driver of structure formation is gravity.

(e.g. Behroozi et al. 2013)

Alejandro Benitez-Llambay

4

Structural properties of "dark" galaxies

Lessons from these simple considerations

- Halos with M₂₀₀ < 10⁸ M_o are expected to be completely devoid of gas at z=0.
- All halos with M₂₀₀ >10^{9.6} M_o are expected to host a luminous galaxy at z=0; there are not enough baryons in the Universe to provide pressure support against gravitational collapse.
- Halos with M₂₀₀ < 10^{9.6} M_o may or may not host a luminous galaxy at z=0. This depends largely on the mass of the halo before reionization.
- There is a narrow range in halo mass (3x10⁸ 5x10⁹ M_o) in which the gas neither completely escape the system nor it collapses further.

Structural properties of "dark" galaxies

Lessons from these simple considerations

- Halos with M₂₀₀ < 10⁸ M_o are expected to be completely devoid of gas at z=0.
- All halos with M₂₀₀ >10^{9.6} M_o are expected to host a luminous galaxy at z=0; there are not enough baryons in the Universe to provide pressure support against gravitational collapse.
- Halos with M₂₀₀ < 10^{9.6} M_o may or may not host a luminous galaxy at z=0. This depends largely on the mass of the halo before reionization.
- There is a narrow range in halo mass (3x10⁸ 5x10⁹ M_o) in which the gas neither completely escape the system nor it collapses further.

These halos would be realised with 50 gas particles if simulated with, e.g. 10⁴ M్ద.

Benitez-Llambay, A. (in prep)

Alejandro Benítez-Llambay

6

Does previous model work?

High-resolution hydrodynamical simulations

Testing this model with high-resolution numerical simulations

The simulation

- Cosmological hydrodynamical simulation, using P-Gadget3 + EAGLE galaxy formation model.
- Box (20 Mpc)³
- Gas particle mass ~ $10^4 M_{\odot}$

Sample of dark halos:

- Only central halos, with a minimum halo mass 10^{8.75} M_o (expected to be resolved by 30 gas particles)
- No bound stars within R₂₀₀.

Subsample:

- Halos that contain more than 1 gas particle
- Halos that contain 0 bound gas particles

Benitez-Llambay, A. (in prep)

Project gas density in the simulated volume

Dark galaxies that contain gas (RELHICs) REhionization-Limited-HI-Clouds

Dark galaxies without gas (COSWEBS) "COSmic WEB Stripped halos"

Dark galaxies without gas (COSWEBS) "COSmic WEB Stripped halos"

Cosmic Web and halos Gas stripping by the massive

Observable properties of RELHICs

- Simulations are needed to determine the relative abundance of RELHICs and luminous galaxies.
- Structural and observable properties can be calculated analytically.

Observable properties of RELHICs

- Simulations are needed to determine the relative abundance of RELHICs and luminous galaxies.
- Structural and observable properties can be calculated analytically.

RELHICs HI-mass function

Observational signatures and comparison with existing observations

Benitez-Llambay et al. (2017)

- Properties of simulated RELHICs from the APOSTLE simulations and UCHVCs from ALFALFA (Adams et al. 2013)
- All RELHICs are round, have positive galactocentric velocities and have a well-defined thermal broadening.

- Simulated low-mass galaxies have properties compatible with some UCHVCs. After all, Leo P was discovered as an UCHVCs.

Conclusions

- ★ (ACDM + reionization): The Universe must have an increasingly large fraction of "dark" dark matter halos below a halo mass $M_{200} < 3x10^9 M_{\odot}$ at redshift z=0.
- ★ Theoretical calculations enable to predict the thermodynamics properties of these halos in detail. A simple model has proven to be successful in describing the properties of simulated RELHICs.
- ★ We predict that RELCHIs should be more common in low-density regions have (i) positive galactocentric velocities, (ii) be round (a/b > 0.8), (iii) relatively low HI fluxes, (iv) very small angular diameter and (v) a well-defined thermal broadening.
- ★ Some UCHVCs observed by ALFALFA are consistent the properties expected for "dark" galaxies, although they tend to be larger.
- ★ Probing ACDM requires characterizing the population of RELHICs (need of high-resolution numerical simulations to resolve the interactions of low-mass halos with the environment). I am on it. Stay tuned!.

Check further details in: Benitez-Llambay et al. (2017) Benitez-Llambay (2019) (in prep)