reionisation: in the context of small-scale Structure

sownak.bose@cfa.harvard.edu

Durham, UK 01 August, 2019

Sownak Bose

CENTER FOR **ASTROPHYSICS**

HARVARD & SMITHSONIAN

Sow

CENTER FOR

sownak.bose@cfa.harvard.edu

Durham, 01 August,

etion: in the ntext of

the nature of natiler

small-scale Structure

nak Bose

ASTROPHYSICS

ARVARD & SMITHSONIAN

UK

2019

a milestone in the history of the cosmos

Years after the Big Bang 400 thousand 0.1 billion The Big Bang Formation astronomical The Dark Ages Recombination 0 the first l objects Reionisation Fully ionised Neutral 100 1000

[Image credit: NAOJ / ESO]

Redshift + 1

the missing satellites "problem"

~ 54 satellites known around MW (SDSS+DES)

why do most subhaloes remain dark?

> 100,000 DM subhaloes
predicted by CDM

it ain't easy being a galaxy

absolute magnitude

abundance of objects

AGN feedback making a galaxy in a small halo is doubly difficult because:

reionisation heats gas above Tvir, (1) preventing cooling, and SN feedback removes SF gas from haloes (2)

[see also Rees (1986); Efstathiou (1992); Kauffman+ (1993); Loeb & Barkana (2000); Bullock+ (2001); Benson+ (2002); Brooks & Zolotov (2014); Wetzel+ (2016) etc.]

feedback + photoionisation + the impact of the central galaxy

Galaxies

[see also Rees (1986); Efstathiou (1992); Kauffman+ (1993); Loeb & Barkana (2000); Bullock+ (2001); Benson+ (2002); Brooks & Zolotov (2014); Wetzel+ (2016) etc.]

feedback + photoionisation + the impact of the central galaxy

"(It makes me) apoplectic! The only example I know where the solution precedes the problem!" - Someone in this room

feedback + photoionisation + the impact of the central galaxy

[see also Rees (1986); Efstathiou (1992); Kauffman+ (1993); Loeb & Barkana (2000); Bullock+ (2001); Benson+ (2002); Brooks & Zolotov (2014); Wetzel+ (2016) etc.]

feedback + photoionisation + the impact of the central galaxy

[see also Rees (1986); Efstathiou (1992); Kauffman+ (1993); Loeb & Barkana (2000); Bullock+ (2001); Benson+ (2002); Brooks & Zolotov (2014); Wetzel+ (2016) etc.]

"(It makes me) apoplectic! The only example I know where the solution precedes the problem!" - Someone in this room

(correct: it was Carlos Frenk)

[see also Wheeler+ 2015; Garrison-Kimmel+ 2019; Munshi+ 2019]

faint satellites typically assemble bulk of stellar mass prior to reionisation

[see also Wheeler+ 2015; Garrison-Kimmel+ 2019; Munshi+ 2019]

faint satellites typically assemble bulk of stellar mass prior to reionisation

[see also Wheeler+ 2015; Garrison-Kimmel+ 2019; Munshi+ 2019]

a unique imprint in the lf of satellites

redshift of reionisation

a unique imprint in the lf of satellites

redshift of reionisation

filtering scale for reionisation

the diversity of ultrafaint abundances

and the diversity of halo growth histories

numerics

parent N-body simulation: COLOR $L_{\text{box}} = 100 \text{ Mpc}; m_p = 8.8 \times 10^6 \text{ M}_{\odot}$

High-resolution zoom-in volume: COCO

$$L_{\rm hr} = 24 \,{\rm Mpc}; m_p = 1.6 \times 10^5 \,{\rm M_{\odot}}$$

[Sawala+ 2016; Hellwing, ..., SB+ 2016]

semi-analytic model of galaxy formation: GALFORM

[Cole+ 1994, 2000; Lacey+ 2016]

$M_{200}^{\text{host}} = [1 - 1.3] \times 10^{12} \,\mathrm{M_{\odot}}$ [~ 400 objects]

redshift at which 50% of host's mass was formed

redshift at which 50% of host's mass was formed

$M_{200}^{\text{host}} = [1 - 1.3] \times 10^{12} \,\mathrm{M_{\odot}}$ [~ 400 objects]

redshift at which 50% of host's mass was formed

 \mathbf{X}

our Galaxy's past history and present-day satellite content are pretty unique an ancient accretion event likely dragged in a large number of UFs

where can you find an ultrafaint?

 10^{7}

-15

SB, Deason, Belokurov, Frenk [soon, I hope]

- the ultrafaints are generally concentrated pretty centrally
- profiles are more centrallyconcentrated in early-forming haloes
- a sizeable proportion (~70%) of these are identified as "orphans" — whose subhaloes have been disrupted below the resolution limit of the simulation [20 particle limit: $3.2 \times 10^6 M_{\odot}$]

what if the dark matter isn't CDM?

cold dark matter

Movie: Mark Lovell

warm dark matter

cold dark matter

Movie: Mark Lovell

warm dark matter

SB+ (2017) [arXiv: 1604.07409]

... and also seen in hydro simulations, Lovell+ (2018) [Mark's talk from Monday]

functi nositv

high-z galaxies form through mostly monolithic collapse and mergers are more gas-rich than in CDM

absolute UV magnitude

[see also Wang+ (2017)]

tracing the sources of ionising photons

Compensation: The dominant sources of ionising photons tend to be more massive in sterile neutrino cosmologies than in CDM

increasingly warm dark matter

going one step further than averaged quantities

with the topology of reionisation

ionisation history consistent with obs. constraints

z = 10.02

CDM, $f_{esc} = 0.5$

self-consistent reionisation simulations with Arepo-RT (Kannan+2018) with IllustrisTNG physics

SB, Kannan, Mason, Vogelsberger+

ionisation history consistent with obs. constraints

z = 10.02

increasing f_{esc} can reconcile the timing of reionisation, but doesn't add small-scale "ionising CDM, power"

self-consistent reionisation simulations with Arepo-RT (Kannan+2018) with IllustrisTNG physics

SB, Kannan, Mason, Vogelsberger+

z = 6.83

ionisation history consistent with obs. constraints

self-consistent reionisation simulations with Arepo-RT (Kannan+2018) with IllustrisTNG physics

SB, Kannan, Mason, Vogelsberger+

CONCUSIONS

- ultrafaint galaxies are unique: bearing memory of reionisation, the assembly of the host galaxy, and the nature of the dark matter
- at fixed mass, haloes that assemble early contain more UFs histories similar to that of our Galaxy are quite rare
- a large fraction of these satellites are located within the inner ~ 60 kpc of the host halo at z = 0
- despite the absence of low-mass dwarfs, DM models with a freestreaming cutoff have no issues reionising in time: brighter galaxies form efficiently, and carry the burden
- future 21cm experiments may be able to probe the absence of smallscale structure by measuring the size distribution of ionisation fronts

sownak.bose@cfa.harvard.edu

