EFFECT OF BINARIES ON DARK MATTER ESTIMATES IN DWARF GALAXIES

Caveats to Dwarf Galaxy Indirect Detection Limits

LAURA J. CHANG PRINCETON UNIVERSITY Small Galaxies, Cosmic Questions July 31, 2019

IN COLLABORATION WITH: LINA NECIB (CALTECH)

THERMAL WIMP DARK MATTER (DM)

L. Pieri et al. [0908.0195]

INDIRECT DETECTION BENCHMARK: DWARF GALAXIES

- Low astrophysical backgrounds (dust/gas) compared to other indirect detection targets
 - \rightarrow some of the most stringent and robust constraints

Fermi-LAT collaboration and DES collaboration [1611.03184]

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	l, b	Distance	$r_{1/2}$	M_V	$\log_{10}(J_{\text{meas}})$	$\log_{10}(J_{\text{pred}})$	
Kinematically Confirmed Galaxies Boötes I [*] 358.08, 69.62 66 189 -6.3 18.2 ± 0.4 18.5 Boötes II 353.09, 68.87 42 46 -2.7 18.9 Boötes III 35.41, 75.35 47 -5.8 18.8 Canes Venatici II* 113.17, 98.2 218 441 -6.6 17.4 ± 0.3 17.4 Carnes Venatici II* 113.38, 82.70 160 52 -4.9 17.9 ± 0.1 18.1 Coma Berenices* 241.89, 83.61 44 60 -4.1 19.0 ± 0.4 18.3 Draco II 98.29, 42.88 24 16 -2.9 19.3 Fornax* 237.10, -65.65 147 594 -13.4 17.8 ± 0.1 17.8 Hercules* 28.73, 36.87 132 187 -6.6 16.9 ± 0.7 17.9 Hydra II 295.62, 30.46 134 66 -4.8 17.8 Leo I 225.99, 49.9		(\deg, \deg)	(kpc)	(pc)	(mag)	$\log_{10}({ m GeV^2cm^{-5}})$	$\log_{10}({ m GeV^2cm^{-5}})$	
				Kiner	natically	Confirmed Galaxies		
Bootes II 353.60, 68.87 42 46 -2.7 18.9 Boötes II 35.41, 75.35 47 -5.8 18.8 Canes Venatici I 74.31, 79.82 218 441 -8.6 17.4 \pm 0.3 17.4 Canes Venatici I 113.58, 82.70 160 52 -4.9 17.6 \pm 0.4 17.7 Carina* 260.11, -22.22 105 205 -9.1 17.9 \pm 0.1 18.1 Coma Berenices* 241.89, 83.61 44 60 -4.1 19.0 \pm 0.4 18.8 Draco* 86.37, 34.72 76 184 -8.8 18.8 \pm 0.1 17.8 Draco 19.829, 42.88 24 16 -2.9 19.3 Formax* 237.10, -65.65 147 75.4 -13.4 17.8 \pm 0.1 17.8 Hercules* 28.73, 36.87 132 187 -6.6 16.9 \pm 0.7 17.9 Horologium I 271.38, 54.74 87 52.1 17.8 1	Boötes I*	358.08, 69.62	66	189	-6.3	18.2 ± 0.4	18.5	
Boötes III 35.41, 75.35 47 5.8 18.8 Canes Venatici II 74.31, 79.82 218 441 -8.6 17.4 \pm 0.3 17.4 Carnes Venatici II* 113.58, 82.70 160 52 -4.9 17.6 \pm 0.4 17.7 Carnes Venatici II* 113.58, 82.70 160 52 -4.9 17.6 \pm 0.4 17.7 Carnes Venatici II* 113.85, 82.70 160 205 -9.1 17.9 \pm 0.1 18.1 Cornes Venatici II* 20.222 105 205 -9.1 17.9 \pm 0.1 18.8 Draco II 98.29, 42.88 24 16 -2.9 19.3 Formax* 237.10, -65.65 147 594 -13.4 17.8 \pm 0.1 17.8 Horologium I 271.38, -54.74 87 61 -3.5 18.2 Hydra II 205.62, 30.46 134 66 -4.8 17.8 12.0 17.4 12.0 17.4 Leo I 225.	Boötes II	353.69, 68.87	42	46	-2.7		18.9	
	Boötes III	35.41, 75.35	47		-5.8		18.8	
	Canes Venatici I	74.31, 79.82	218	441	-8.6	17.4 ± 0.3	17.4	
$ \begin{array}{cccc} {\rm Carina}^{*} & 260.11, -22.22 & 105 & 205 & -9.1 & 17.9 \pm 0.1 & 18.1 \\ {\rm Coma Berenices}^{*} & 241.89, 83.61 & 44 & 60 & -4.1 & 19.0 \pm 0.4 & 18.8 \\ {\rm Draco}^{*} & 86.37, 34.72 & 76 & 184 & -8.8 & 18.8 \pm 0.1 & 18.3 \\ {\rm Draco}^{*} & 28.63, 73.4.72 & 76 & 184 & -8.8 & 18.8 \pm 0.1 & 17.8 \\ {\rm Draco}^{*} & 28.73, 36.87 & 132 & 187 & -6.6 & 16.9 \pm 0.7 & 17.9 \\ {\rm Horologium} I & 271.38, -54.74 & 87 & 61 & -3.5 & \dots & 18.2 \\ {\rm Hydra} II & 295.62, 30.46 & 134 & 66 & -4.8 & \dots & 17.8 \\ {\rm Leo} I & 225.99, 49.11 & 254 & 223 & -12.0 & 17.8 \pm 0.2 & 17.3 \\ {\rm Leo} I & 225.09, 49.11 & 254 & 223 & -12.0 & 17.8 \pm 0.2 & 17.4 \\ {\rm Leo} IV^{*} & 265.44, 56.51 & 154 & 147 & -5.8 & 16.3 \pm 1.4 & 17.7 \\ {\rm Leo} IV^{*} & 265.44, 56.51 & 154 & 147 & -5.8 & 16.3 \pm 1.4 & 17.7 \\ {\rm Leo} IV^{*} & 266.46, 58.54 & 178 & 95 & -5.2 & 16.4 \pm 0.9 & 17.6 \\ {\rm Pisces} II & 79.21, -47.11 & 182 & 45 & -5.0 & \dots & 17.6 \\ {\rm Pisces} II & 79.21, -47.11 & 182 & 45 & -5.0 & \dots & 17.6 \\ {\rm Seculpto}^{*} & 287.53, -83.16 & 86 & 233 & -11.1 & 18.5 \pm 0.1 & 18.2 \\ {\rm Segue} 1^{*} & 220.48, 50.43 & 23 & 21 & -1.5 & 19.4 \pm 0.3 & 19.4 \\ {\rm Sextans}^{*} & 243.50, 42.27 & 86 & 561 & -9.3 & 17.5 \pm 0.2 & 18.2 \\ {\rm Triangulum} II & 140.90, -23.82 & 30 & 30 & -1.8 & \dots & 19.1 \\ {\rm Tucan} II & 328.04, -52.35 & 58 & 120 & -3.9 & \dots & 18.6 \\ {\rm Ursa} Major I^{*} & 152.46, 37.44 & 32 & 91 & -4.2 & 19.4 \pm 0.4 & 19.1 \\ {\rm Ursa} Minor^{*} & 10.49.7 44.80 & 76 & 120 & -88 & 18.9 \pm 0.2 & 18.3 \\ {\rm Willman} 1^{*} & 158.58, 56.78 & 38 & 19 & -2.7 & \dots & 18.9 \\ {\rm Horologium} II & 249.78, -51.65 & 331 & 156 & -7.4 & \dots & 17.6 \\ {\rm Eridanus} II & 249.78, -51.65 & 331 & 156 & -7.4 & \dots & 17.6 \\ {\rm Eridanus} II & 249.78, -51.65 & 331 & 156 & -7.4 & \dots & 17.9 \\ {\rm Grus} II & 351.14, -51.94 & 53 & 93 & -3.9 & \dots & 18.7 \\ {\rm Horologium} II & 262.48, -54.14 & 78 & 33 & -2.6 & \dots & 18.3 \\ {\rm Horologium} II & 262.48, -54.14 & 78 & 33 & -2.6 & \dots & 18.7 \\ {\rm Horologium} II & 262.48, -54.14 & 78 & 33 & -2.6 & \dots & 18.7 \\ {\rm Horologium} II & 257.29 & -40.64 & 126 & 44 & -3.7 & \dots & 17.9 \\ {$	Canes Venatici II*	113.58, 82.70	160	52	-4.9	17.6 ± 0.4	17.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Carina*	260.11, -22.22	105	205	-9.1	17.9 ± 0.1	18.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Coma Berenices [*]	241.89, 83.61	44	60	-4.1	19.0 ± 0.4	18.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Draco*	86.37, 34.72	76	184	-8.8	18.8 ± 0.1	18.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Draco II	98.29, 42.88	24	16	-2.9		19.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fornax*	237.1065.65	147	594	-13.4	17.8 ± 0.1	17.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hercules*	28.73, 36.87	132	187	-6.6	16.9 ± 0.7	17.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Horologium I	271.38, -54.74	87	61	-3.5		18.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hydra II	$295.62.\ 30.46$	134	66	-4.8		17.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Leo I	225.99, 49.11	254	223	-12.0	17.8 ± 0.2	17.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Leo II*	220.17, 67.23	233	164	-9.8	18.0 ± 0.2	17.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Leo IV^*	265.44, 56.51	154	147	-5.8	16.3 ± 1.4	17.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Leo V	261.86, 58.54	178	95	-5.2	16.4 ± 0.9	17.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pisces II	79.21, -47.11	182	45	-5.0		17.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reticulum II	266.30, -49.74	32	35	-3.6	18.9 ± 0.6	19.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sculptor*	287.53, -83.16	86	233	-11.1	18.5 ± 0.1	18.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Segue 1*	220.48, 50.43	23	21	-1.5	19.4 ± 0.3	19.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sextans*	243.50, 42.27	86	561	-9.3	17.5 ± 0.2	18.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Triangulum II	140.90, -23.82	30	30	-1.8		19.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tucana II	328.0452.35	58	120	-3.9		18.6	
Ursa Major II* 152.46, 37.44 32 91 -4.2 19.4 \pm 0.4 19.1 Ursa Minor* 104.97, 44.80 76 120 -8.8 18.9 \pm 0.2 18.3 Willman 1* 158.58, 56.78 38 19 -2.7 18.9 Likely Galaxies Columba I 231.62, -28.88 182 101 -4.5 17.6 Eridanus II 249.78, -51.65 331 156 -7.4 17.1 Grus I 338.68, -58.25 120 60 -3.4 17.9 Grus II 351.14, -51.94 53 93 -3.9 18.7 Horologium II 262.48, -54.14 78 33 -2.6 18.3 Indus II 354.00, -37.40 214 181 -4.3 17.4 Pegasus III 69.85, -41.81 205 57 -4.1 17.5 Phoenix II 323.69, -59.74 96 33 -3.7 18.1 Pictor I 257.29, -40.64	Ursa Major I	159.43, 54.41	97	143	-5.5	17.9 ± 0.5	18.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ursa Major II*	152.46, 37.44	32	91	-4.2	19.4 ± 0.4	19.1	
Willman 1* 158.58, 56.78 38 19 -2.7 18.9 Columba I 231.62, -28.88 182 101 -4.5 17.6 Eridanus II 249.78, -51.65 331 156 -7.4 17.1 Grus I 338.68, -58.25 120 60 -3.4 17.9 Grus II 351.14, -51.94 53 93 -3.9 18.7 Horologium II 262.48, -54.14 78 33 -2.6 18.3 Indus II 354.00, -37.40 214 181 -4.3 17.4 Pegasus III 69.85, -41.81 205 57 -4.1 17.5 Phoenix II 323.69, -59.74 96 33 -3.7 18.1 Pictor I 257.29, -40.64 126 44 -3.7 18.2 Sagittarius II 18.94, -22.90 67 34 -5.2 18.2 Sagittarius II 18.94, -5.29 48 128 -3.5 18.7 <td>Ursa Minor*</td> <td>104.97, 44.80</td> <td>76</td> <td>120</td> <td>-8.8</td> <td>18.9 ± 0.2</td> <td>18.3</td>	Ursa Minor*	104.97, 44.80	76	120	-8.8	18.9 ± 0.2	18.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Willman 1*	158.58, 56.78	38	19	-2.7		18.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		100100, 00110	Likely Galaxies					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Columba I	231.62, -28.88	182	101	-4.5	••••	17.6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eridanus II	249.78, -51.65	331	156	-7.4		17.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Grus I	338.68, -58.25	120	60	-3.4		17.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grus II	351.14, -51.94	53	93	-3.9		18.7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Horologium II	262.48, -54.14	78	33	-2.6		18.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Indus II	354.00, -37.40	214	181	-4.3		17.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pegasus III	69.85, -41.81	205	57	-4.1		17.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Phoenix II	323.69, -59.74	96	33	-3.7		18.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pictor I	257.29, -40.64	126	44	-3.7		17.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reticulum III	273.88, -45.65	92	64	-3.3		18.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sagittarius II	18.94, -22.90	67	34	-5.2		18.4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tucana III	315.38, -56.18	25	44	-2.4		19.3	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Tucana IV	313.29, -55.29	48	128	-3.5		18.7	
Cetus II156.47, -78.533017 0.0 19.1Eridanus III274.95, -59.609612-2.418.1Kim 2347.16, -42.0710512-1.518.1Tucana V316.31, -51.895516-1.618.6		-		Ambiguous Systems				
Eridanus III $274.95, -59.60$ 9612 -2.4 18.1Kim 2 $347.16, -42.07$ 10512 -1.5 18.1Tucana V $316.31, -51.89$ 5516 -1.6 18.6	Cetus II	156.47, -78.53	30	17	0.0		19.1	
Kim 2 $347.16, -42.07$ 105 12 -1.5 18.1 Tucana V $316.31, -51.89$ 55 16 -1.6 18.6	Eridanus III	274.95, -59.60	96	12	-2.4		18.1	
Tucana V 316.31, -51.89 55 16 -1.6 18.6	Kim 2	347.16, -42.07	105	12	-1.5		18.1	
	Tucana V	316.31, -51.89	55	16	-1.6		18.6	

Fermi-LAT collaboration and DES collaboration [1611.03184]

• Constraints rely on accurate J-factors

(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Name	\hat{l},\hat{b}	Distance	$r_{1/2}$	\dot{M}_V	$\log_{10}(\hat{J}_{\text{meas}})$	$\log_{10}(J_{\text{pred}})$	
	(\deg, \deg)	(kpc)	(pc)	(mag)	$\log_{10}({\rm GeV^2cm^{-5}})$	$\log_{10}({\rm GeV}^2{\rm cm}^{-5})$	
			- Kinematically Confirmed Galaxies —				
Boötes I*	358.08, 69.62	66	189	-6.3	18.2 ± 0.4	18.5	
Boötes II	353.69, 68.87	42	46	-2.7		18.9	
Boötes III	35.41, 75.35	47		-5.8		18.8	
Canes Venatici I	74.31, 79.82	218	441	-8.6	17.4 ± 0.3	17.4	
Canes Venatici II*	113.58, 82.70	160	52	-4.9	17.6 ± 0.4	17.7	
Carina*	260.11, -22.22	105	205	-9.1	17.9 ± 0.1	18.1	
Coma Berenices*	241 89 83 61	44	60	-4.1	19.0 ± 0.4	18.8	
Draco*	86.37. 34.72	76	184	-8.8	18.8 ± 0.1	18.3	
Draco II	98 29 42 88	24	16	-2.9	10.0 ± 0.1	19.3	
Fornax*	$237\ 10\ -65\ 65$	147	594	-134	17.8 ± 0.1	17.8	
Hercules*	28 73 36 87	132	187	-6.6	16.9 ± 0.7	17.9	
Horologium I	271 38 -54 74	87	61	-3.5	10.5 ± 0.1	18.2	
Hydra II	205 62 30 46	13/	66	-0.0		17.8	
Leo I	225.02, 30.40 225.09, 49.11	254	223	-12.0	17.8 ± 0.2	17.3	
Leo II*	220.33, 43.11 220.17, 67.23	204	164	_0.8	11.0 ± 0.2 18.0 ± 0.2	17.0	
Leo IV*	265 44 56 51	154	1/7	-5.8	16.0 ± 0.2 16.3 ± 1.4	17.4	
Leo V	261.86 58 54	178	05	-5.0 5.2	10.5 ± 1.4 16.4 ± 0.0	17.6	
Discos II	201.00, 50.54 70.91 47.11	182	95 45	-5.2	10.4 ± 0.9	17.0	
Roticulum II	266 20 40 74	32	25	-5.0	18.0 ± 0.6	10.1	
Sculptor*	200.50, -49.14 287.52, 82.16	32 86	- <u>-</u>	-5.0	18.5 ± 0.0 18.5 ± 0.1	18.0	
Scuptor Secure 1*	201.00, -00.10	00	200 01	-11.1	10.3 ± 0.1 10.4 \perp 0.2	10.2	
Segue 1 [*]	220.40, 50.43	23	21 E61	-1.0	19.4 ± 0.3 175 ± 0.2	19.4	
Sextans [*]	243.30, 42.27	80	201	-9.3	17.5 ± 0.2	18.2	
Triangulum II	140.90, -23.82	30	30	-1.8		19.1	
Iucana II Uuca Maian I	328.04, -52.35	58	120	-3.9		18.0	
Ursa Major I	159.43, 54.41	97	143	-5.5	17.9 ± 0.5	18.1	
Ursa Major II ^{**}	152.46, 37.44	32	91	-4.2	19.4 ± 0.4	19.1	
Ursa Minor [*]	104.97, 44.80	76	120	-8.8	18.9 ± 0.2	18.3	
Willman 1 [≁]	158.58, 56.78	38	19	-2.7 Liko	 In Colorios	18.9	
Columba I	221 62 -28 88	182	101	— Like	Ty Galaxies —	17.6	
Eridonus II	231.02, -20.00 240.78, 51.65	221	156	-4.5		17.0	
Crus I	249.70, -51.05	120	60	-1.4		17.1	
Crus II	350.00, -50.25 351.14, 51.04	52	00	-3.4		18.7	
Horologium II	262 48 54 14	55 78	22	-3.9		18.2	
Induc II	202.40, -34.14 354.00 37.40	10 914	181	-2.0		10.5	
Dogogue III	60.85 41.81	214	57	-4.5		17.4	
Dhooniy II	393 60 50 74	205 06	22	-4.1 27		18 1	
Dictor I	223.09, -39.14 257.20 40.64	126	33 44	-3.7		17.0	
Roticulum III	201.29, -40.04	020	64	-0.7 2.2		18.9	
Socittoring II	410.00, -40.00 18 04 00 00	94 67	24			10.2	
Saginarius II Tugana III	10.94, -22.90 215 28 56 19	07 25	54 44	-0.2		10.4	
Tucana III	313.30, -30.18 212.20 FF 20	20 49	44 100	-2.4 2 F		19.3	
Tucana TV	515.29, -55.29	48	128 -3.5 18.7 ——— Ambiguous Systems ————				
Cetus II	156 47 -78 53	30	17	0.0		19.1	
Eridanus III	274 95 -50 60	96	19	_2 4		18 1	
Kim 9	214.00, -09.00 347.16 -49.07	105	12	_1 5		18 1	
Tucana V	316 31 -51 80	55	16	-1.0		18.6	
	510.51, -51.89	00	10	-1.0	•••	10.0	

Fermi-LAT collaboration and DES collaboration [1611.03184]

• Constraints rely on accurate J-factors

(1) Name	(2)	(3) Distance	(4)	(5) $M_{\rm W}$	(6)	(7)
Ivanie	(deg. deg)	(kpc)	(pc)	(mag)	$\log_{10}(\text{GeV}^2 \text{ cm}^{-5})$	$\log_{10}(\text{GeV}^2 \text{ cm}^{-5})$
	(408, 408)	("P°)	(P°)	(11108)	Carfana d Calaria	10810(00000000)
Detter I*	250 00 60 62	66	Kinei 180		18.9 0.4	10 5
Bootes I [*]	338.08, 09.02	42	189	-0.3	18.2 ± 0.4	18.0
Bootes II	25 41 75 25	42	40	-2.1		10.9
Canos Vonatici I	55.41, 75.55 74.31, 70.82	218		-5.6	17.4 ± 0.3	10.0 17.4
Canos Vonatici II*	113 58 89 70	160	52	-0.0	17.4 ± 0.5 17.6 ± 0.4	17.4
Carina*	260 11 -22 22	105	205	_0.1	17.0 ± 0.4 17.9 ± 0.1	18.1
Coma Berenices*	200.11, -22.22	105	200	-3.1	17.5 ± 0.1 19.0 ± 0.4	18.8
Draco*	86 37 34 72	76	18/	-8.8	13.0 ± 0.4 18.8 ± 0.1	18.3
Draco II	08 20 /2 88	24	16	2.0	10.0 ± 0.1	10.3
Fornax [*]	$237\ 10\ -65\ 65$	$\frac{24}{147}$	594	-2.5	17.8 ± 0.1	17.8
Horcules*	237.10, -03.03	139	187	-6.6	16.9 ± 0.1	17.0
Horologium I	271 38 -54 74	87	61	-3.5	10.5 ± 0.1	18.2
Hydra II	205 62 30 46	13/	66	-3.5		17.8
Leo I	235.02, 30.40	254	223	-4.0	17.8 ± 0.2	17.3
Leo II*	220.33, 45.11 220.17, 67.23	234	164	-12.0	11.0 ± 0.2 18.0 ± 0.2	17.4
Leo IV*	220.11, 01.25 265.44, 56.51	255 154	1/1	-5.8	16.0 ± 0.2 16.3 ± 1.4	17.4
Leo V	261 86 58 54	178	95	-5.2	16.5 ± 1.4 16.4 ± 0.9	17.6
Pisces II	70.201.00, 50.54 70.21, -47.11	182	45	-5.0	10.4 ± 0.5	17.6
Reticulum II	266 30 -49 74	32	35	-3.6	18.9 ± 0.6	19.1
Sculptor*	287 53 -83 16	86	233	-11.1	18.5 ± 0.0 18.5 ± 0.1	18.2
Segue 1*	201.00, -00.10	23	200	-15	10.5 ± 0.1 19.4 ± 0.3	19.2
Sextane*	243 50 42 27	20 86	561	-0.3	17.4 ± 0.3 17.5 ± 0.2	18.2
Triangulum II	140.90 -23.82	30	30	-3.5	11.5 ± 0.2	10.2
Tucana II	328.04 - 52.35	58	120	-3.9		18.6
Ursa Major I	159 43 54 41	97	143	-5.5	17.9 ± 0.5	18.1
Ursa Major II*	152.46, 37.44	32	91	-4.2	19.4 ± 0.4	19.1
Ursa Minor*	104.97, 44.80	76	120	-8.8	18.9 ± 0.2	18.3
Willman 1*	158.58, 56.78	38	19	-2.7	1010 1 012	18.9
	100.000, 00.00		20	— Like	ly Galaxies ———	10.0
Columba I	231.6228.88	182	101	-4.5		17.6
Eridanus II	249.7851.65	331	156	-7.4		17.1
Grus I	338.68, -58.25	120	60	-3.4		17.9
Grus II	351.14, -51.94	53	93	-3.9		18.7
Horologium II	262.48, -54.14	78	33	-2.6		18.3
Indus II	354.00, -37.40	214	181	-4.3		17.4
Pegasus III	69.85, -41.81	205	57	-4.1		17.5
Phoenix II	323.69, -59.74	96	33	-3.7		18.1
Pictor I	257.29, -40.64	126	44	-3.7		17.9
Reticulum III	273.88, -45.65	92	64	-3.3		18.2
Sagittarius II	18.94, -22.90	67	34	-5.2		18.4
Tucana III	315.38, -56.18	25	44	-2.4		19.3
Tucana IV	313.29, -55.29	48	128	-3.5		18.7
			— Ambiguous Systems —			
Cetus II	156.47, -78.53	30	17	0.0		19.1
Eridanus III	274.95, -59.60	96	12	-2.4		18.1
Kim 2	347.16, -42.07	105	12	-1.5		18.1
Tucana V	316.31, -51.89	55	16	-1.6		18.6

Use with caution:

"Galaxies for which Published Kinematics May Not Reliably Translate to Masses"

J. D. Slmon [1901.05465]

Fermi-LAT collaboration and DES collaboration [1611.03184]

• Constraints rely on accurate J-factors

Fermi-LAT collaboration and DES collaboration [1611.03184]

- Important assumptions:
 - Equilibrium
 - K. El-Badry et al. [1610.04232]

- Equilibrium K. El-Badry et al. [1610.04232]
- Spherical system V. Bonnivard et al. [1407.7822]

- Equilibrium K. El-Badry et al. [1610.04232]
- Spherical system V. Bonnivard et al. [1407.7822]
- Non-rotating system

- Equilibrium
 K. El-Badry et al. [1610.04232]
- Spherical system V. Bonnivard et al. [1407.7822]
- Non-rotating system
- No accounting for binaries
 - A. W. McConnachie and P. Cote [1009.4205]
 - M. E. Spencer et al. [1811.06597]
 - M. E. Spencer et al. [1706.04184]

M. E. Spencer et al. [1811.06597]

• Important assumptions:

- Equilibrium
 K. El-Badry et al. [1610.04232]
- Spherical system V. Bonnivard et al. [1407.7822]
- Non-rotating system
- No accounting for binaries
 - A. W. McConnachie and P. Cote [1009.4205]
 - M. E. Spencer et al. [1811.06597]
 - M. E. Spencer et al. [1706.04184]

M. E. Spencer et al. [1811.06597]

• Important assumptions:

- Equilibrium
 K. El-Badry et al. [1610.04232]
- Spherical system V. Bonnivard et al. [1407.7822]
- Non-rotating system
- No accounting for binaries
 - A. W. McConnachie and P. Cote [1009.4205]
 - M. E. Spencer et al. [1811.06597]
 - M. E. Spencer et al. [1706.04184]

M. E. Spencer et al. [1811.06597]

Spherical Jeans equation

3d radial velocity dispersion, stellar density profile

Halo mass (DM density profile)

• Important assumptions:

- Equilibrium
 K. El-Badry et al. [1610.04232]
- Spherical system V. Bonnivard et al. [1407.7822]
- Non-rotating system
- No accounting for binaries
 - A. W. McConnachie and P. Cote [1009.4205]
 - M. E. Spencer et al. [1811.06597]
 M. E. Spencer et al. [1706.04184]

M. E. Spencer et al. [1811.06597]

In practice, observe line-of-sight projected quantities

Line-of-sight projected velocity dispersion, stellar density profile

 $M - \beta (\rho - \beta)$ degeneracy

J.I. Read and P. Steger [1701.04833]

The question

In the cleanest scenario, what is the effect of binaries on dwarf galaxy J-factors?

The question

In the cleanest scenario, what is the effect of binaries on dwarf galaxy J-factors?

The (simulated) data

The question

In the cleanest scenario, what is the effect of binaries on dwarf galaxy J-factors?

The (simulated) data

Gaia Challenge spherical mocks:

- Plummer light profile
- Cusped DM profile
- No velocity anisotropy

The question

In the cleanest scenario, what is the effect of binaries on dwarf galaxy J-factors?

The (simulated) data

Gaia Challenge spherical mocks:

- Plummer light profile
- Cusped DM profile
- No velocity anisotropy

The model

The question

In the cleanest scenario, what is the effect of binaries on dwarf galaxy J-factors?

The (simulated) data

Gaia Challenge spherical mocks:

- Plummer light profile
- Cusped DM profile
- No velocity anisotropy

The model

J.I. Read and P. Steger [1701.04833]

- Nested Plummer light profile: sum of 2 Plummer, independent norm & scale
- Broken power law DM profile: spans cusped \leftrightarrow cored

The question

In the cleanest scenario, what is the effect of binaries on dwarf galaxy J-factors?

The (simulated) data

Gaia Challenge spherical mocks:

- Plummer light profile
- Cusped DM profile
- No velocity anisotropy

The model

- J.I. Read and P. Steger [1701.04833] Nested Plummer light profile: sum of 2 Plummer, independent norm & scale
- Broken power law DM profile: spans cusped \leftrightarrow cored

The method

The question

In the cleanest scenario, what is the effect of binaries on dwarf galaxy J-factors?

The (simulated) data

Gaia Challenge spherical mocks:

- Plummer light profile
- Cusped DM profile
- No velocity anisotropy

The model

- J.I. Read and P. Steger [1701.04833] Nested Plummer light profile: sum of 2 Plummer, independent norm & scale
- Broken power law DM profile: spans cusped \leftrightarrow cored

The method

Run through pipeline to get J-factors for Gaia Challenge

Gaia Challenge <u>http://astrowiki.ph.surrey.ac.uk/dokuwiki</u>

M. G. Walker and J. Peñarrubia [1108.2404]

The question

In the cleanest scenario, what is the effect of binaries on dwarf galaxy J-factors?

The (simulated) data

Gaia Challenge spherical mocks:

- Plummer light profile
- Cusped DM profile
- No velocity anisotropy

The model

Gaia Challenge <u>http://astrowiki.ph.surrey.ac.uk/dokuwiki</u> M. G. Walker and J. Peñarrubia [1108.2404]

- J.I. Read and P. Steger [1701.04833] Nested Plummer light profile: sum of 2 Plummer, independent norm & scale
- Broken power law DM profile: spans cusped \leftrightarrow cored

The method

Run through pipeline to get J-factors for Gaia Challenge

 \rightarrow Repeat analysis with injected binary motions

STEP 1: LIGHT PROFILE FIT

L. J. CHANG | SMALL GALAXIES, COSMIC QUESTIONS 2019

STEP 1: LIGHT PROFILE FIT

L. J. CHANG | SMALL GALAXIES, COSMIC QUESTIONS 2019

STEP 2: VELOCITY DISPERSION FIT

- Use Step 1 to constrain light profile parameters: float over middle 95% posterior parameter ranges from light profile fit
- Optimistically assume velocity error of 0.2 km/s
- Extract posterior distributions for DM parameters

3000 tracers

L. J. CHANG | SMALL GALAXIES, COSMIC QUESTIONS 2019

STEP 2: VELOCITY DISPERSION FIT

- Use Step 1 to constrain light profile parameters: float over middle 95% posterior parameter ranges from light profile fit
- Optimistically assume velocity error of 0.2 km/s
- Extract posterior distributions for DM parameters

INJECTING BINARIES

M. E. Spencer et al. [1811.06597]

As a starting point: Model and code for modeling binary motion from Spencer+ 2018 (If you have a favorite binary model we should try, please let us know!)

L. J. CHANG | SMALL GALAXIES, COSMIC QUESTIONS 2019

EFFECT OF UNMODELED BINARIES ON J-FACTORS

EFFECT OF UNMODELED BINARIES ON J-FACTORS

	10 /	3000 tracers	500	tracers
	19.3	Prelim	inary	Preliminary
$2 \mathrm{cm}^{-51}$	19.2			
	<u>6</u> 19.1	In n		
	0100 19.0	• Ev	en more statistics? (Co	omputationally expensive)
	18.9	• Inj	ecting binary motion of	only in certain regions
	0	f _{binary} • Mic	her systematics?	inary
/tracers	$f_{\rm binary}$	$\log_{10} \left(M(< R_{1/2}) / M_{\odot} \right)$	$\log_{10} \left(M(<\!\!R_{\rm max})/M_{\odot} \right)$	$\int \log_{10} \left(J/(\text{GeV}^2 \text{ cm}^{-5}) \right)$
3000	0	$7.32^{+0.02}_{-0.02}$	$9.14^{+0.25}_{-0.26}$	$19.07^{+0.07}_{-0.05}$
3000	1	$7.38^{+0.17}_{-0.19}$	$9.19^{+0.23}_{-0.20}$	$19.16^{+0.09}_{-0.06}$
500	0	$7.25^{+0.04}_{-0.05}$	$8.81^{+0.18}_{-0.17}$	$18.99^{+0.19}_{-0.10}$
500	1	$7.30^{+0.04}_{-0.04}$	$8.76^{+0.21}_{-0.18}$	$19.06^{+0.16}_{-0.10}$

CONCLUSIONS & EXTENSIONS

- In very simple examples on mock data, the presence of unmodeled binaries can bias estimates of dwarf galaxy J-factors ⇒ bias dark matter constraints derived
- Effect of binaries becomes more drastic with increased statistics
 - With more stars measured and more accurate measurements, will this become a more measurable effect? J. D. Simon et al. [1903.04743]
 - With future multi-epoch binary measurements, could exclude confirmed binaries from analysis
- Statistical uncertainties in dwarf galaxy dark matter constraints need to be better understood and characterized
- Other important systematics: tidal disruption, deviations from equilibrium, nonsphericity, ...

BACKUP SLIDES

Figure 6. Upper limits on flux (*left*) and cross section (*right*) versus J-factor. The points represent J-factors for each target estimated either from spectroscopy (filled circles with error bars) or from the scaling relation discussed in Section 4 (filled circles). The green and yellow shaded regions are the 68% and 95% containment regions for the blank-sky expectations, respectively. For comparison, the three solid lines show the median expected upper limits for DM annihilation with the given cross section. No significant deviation from the background-only expectation is observed.

Spherical Jeans equation

In practice, observe line-of-sight projected quantities

$$\sigma_p^2(R) = \frac{2}{\Sigma(R)} \int_R^\infty \left(1 - \beta_{\text{ani}}(r) \frac{R^2}{r^2} \right) \nu(r) \bar{\nu}_r^2(r) \frac{r \,\mathrm{d}r}{\sqrt{r^2 - R^2}}$$

Spherical Jeans equation

In practice, observe line-of-sight projected quantities

$$\sigma_p^2(R) = \frac{2}{\Sigma(R)} \int_R^\infty \left(1 - \beta_{ani}(r) \frac{R^2}{r^2} \right) \nu(r) \bar{\nu}_r^2(r) \frac{r dr}{\sqrt{r^2 - R^2}}$$

projected velocity dispersion

Spherical Jeans equation

In practice, observe line-of-sight projected quantities

$$\sigma_p^2(R) = \frac{2}{\Sigma(R)} \int_R^\infty \left(1 - \beta_{ani}(r) \frac{R^2}{r^2} \right) \nu(r) \bar{\nu}_r^2(r) \frac{r dr}{\sqrt{r^2 - R^2}}$$
projected 2d stellar density ("light profile")

FIDUCIAL SETUP

- Nested Plummer light profile $\nu(r) = \sum_{i=1}^{N_p} \frac{3M_i}{4\pi a_i^3} \times \left(1 + \frac{r^2}{a_i^2}\right)^{-5/2} \xleftarrow{\text{Abel transform}} \Sigma(R) = \sum_{i=1}^{N_p} \frac{M_i a_i^2}{\pi (a_i^2 + R^2)^2}$
- Broken power law DM profile: analytic formula for enclosed DM mass

$$\rho(r) = \qquad \rho_0 \left(\frac{r}{r_0}\right)^{-\gamma_0} \qquad r < r_0$$

$$\rho(r) = \qquad \rho_0 \left(\frac{r}{r_j}\right)^{-\gamma_{j+1}} \prod_{n=1}^j \left(\frac{r_n}{r_{n-1}}\right)^{-\gamma_n} \qquad r_j < r < r_{j+1}$$

DM profile can span cusped ↔ cored

- Gaia challenge spherical mocks:
 - Plummer light profile
 - Cusped DM profile
 - Isotropic

FIDUCIAL SETUP

- Nested Plummer light profile $\nu(r) = \sum_{i=1}^{N_p} \frac{3M_i}{4\pi a_i^3} \times \left(1 + \frac{r^2}{a_i^2}\right)^{-5/2} \xleftarrow{\text{Abel transform}} \Sigma(R) = \sum_{i=1}^{N_p} \frac{M_i a_i^2}{\pi (a_i^2 + R^2)^2}$
- Broken power law DM profile: analytic formula for enclosed DM mass

$$\rho(r) = \begin{cases} \rho_0 \left(\frac{r}{r_0}\right)^{-\gamma_0} & r < r_0 \\ \rho_0 \left(\frac{r}{r_j}\right)^{-\gamma_{j+1}} \prod_{n=1}^j \left(\frac{r_n}{r_{n-1}}\right)^{-\gamma_n} & r_j < r < r_{j+1} \end{cases} & \text{DM profile can spanding the correct of the second s$$

- Gaia challenge spherical mocks:
 - Plummer light profile
 - Cusped DM profile
 - Isotropic

Analytic formulas for 2d/3d stellar density and enclosed DM mass profiles

 \rightarrow more computationally tractable

FIDUCIAL SETUP

- Nested Plummer light profile J.I. Read and P. Steger [1701.04833] $\nu(r) = \sum_{i=1}^{N_p} \frac{3M_i}{4\pi a_i^3} \times \left(1 + \frac{r^2}{a_i^2}\right)^{-5/2} \xleftarrow{\text{Abel transform}} \Sigma(R) = \sum_{i=1}^{N_p} \frac{M_i a_i^2}{\pi (a_i^2 + R^2)^2}$
- Broken power law DM profile: analytic formula for enclosed DM mass

$$\rho(r) = \begin{cases} \rho_0 \left(\frac{r}{r_0}\right)^{-\gamma_0} & r < r_0 \\ \\ \rho_0 \left(\frac{r}{r_j}\right)^{-\gamma_{j+1}} \prod_{n=1}^{j} \left(\frac{r_n}{r_{n-1}}\right)^{-\gamma_n} & r_j < r < r_{j+1} \end{cases}$$

DM profile can span cusped ↔ cored

- Gaia challenge spherical mocks:
 - Plummer light profile
 - Cusped DM profile
 - Isotropic

STEP 1: LIGHT PROFILE FIT

L. J. CHANG | SMALL GALAXIES, COSMIC QUESTIONS 2019

STEP 2: VELOCITY DISPERSION FIT

STEP 2: VELOCITY DISPERSION FIT

