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• P.I. Tommaso Treu (UCLA)          glass.physics.ucsb.edu

• HST Grism Spectroscopy of 10 massive clusters 

- Incl. the 6 Hubble Frontier Fields & 8 CLASH Clusters

2

• SN searches in the HFF; e.g. SN Refsdal                              
(Kelly+2015)

• Describe how metals cycle in and out of galaxies                
(Jones+2015)

• Investigate the gas and galaxies at the EoR
- 2nd part of this talk

• Assess the environmental dependence on galaxy evolution 
(Vulcani+in prep.)

GLA S S : Main Science DriversS



THE CUSP-CORE PROBLEM

Del Popolo et al. (2016)

▸ Dark matter only simulations predict cusp-y central density profiles 

▸ Observations reveal constant density cores
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WHERE IS STELLAR FEEDBACK MOST DYNAMICALLY SIGNIFICANT?

(α~-1) → cusp
(α~0) → core

Tollet, Macciò, Dutton et. al. (2016) 

▸ Most dynamically effective with 7 ≲ log (M*/M⦿) ≲ 9, at z ~ 2



OSIRIS LENS-AMPLIFIED SURVEY (OLAS)

https://www2.keck.hawaii.edu

▸ IR spectrograph with AO + Integral 
Field Unit (IFU) 

▸ Kinematic survey of lensed galaxies 

▸ Pre-selected for M*, z, SFR, EL fluxes  

▸ 21 galaxies to-date 

▸ 8 < log (M*/M⦿) < 9.8 

▸ 1.25 < z < 2.29



‣ OLAS pushes 1.5 orders of magnitude lower in M*, SFR

OVERVIEW OF SAMPLE - MASS VS SFR

Hirtenstein et al. 2019



EXAMPLE IMAGE PLANE KINEMATICS

Hirtenstein et al. 2019
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INTEGRATED HII REGION VELOCITY DISPERSIONS

0.5’’

Collapse data 
cube into 
effective slit

Fl
ux

Integrated Spectrum

‣ Velocity dispersion from width of integrated Hα emission line 

‣ Traces depth of potential well
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RELATIONSHIP BETWEEN VELOCITY DISPERSION AND SSFR

El-Badry et al. (2017)

= 1 snapshot

log (M*/M⦿) ~ 8.5
z ~ 0

▸ Relationship is a result of feedback cycle, which may drive core formation
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COMPARISON AT FIXED M*

Hirtenstein et al. 2019

‣ OLAS galaxies exhibit 
same trends as in FIRE 

‣ Over both 10 and 
100 Myr timescales 

‣ OLAS samples at high 
end of sSFR



‣ OLAS supports feedback-induced core formation

1-SIGMA AGREEMENT BETWEEN PREDICTED VS EXPECTED DISPERSION

Hirtenstein et al. 2019



CONSTRAINING DWARF GALAXY MASS BUDGETS - PRELIMINARY!
Image plane Source plane

Hirtenstein et al. in prep
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▸ Does this relationship hold for 
lower mass galaxies? 

▸ Need dynamical mass of galaxies 

▸ Mdyn = M* + Mgas + MDM 

▸ Examining the DM distribution in 
high redshift dwarfs: 

▸ Cusp → higher fDM → lower f* 

▸ Core → lower fDM → higher f*

KMOS3d: z~2, massive galaxies
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OSIRIS data
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SUMMARY
‣ Observed direct relationship between sSFR and velocity dispersion 

‣ OLAS observations agree with FIRE gas kinematics to within 1σ 

‣ Kinematic signature of feedback altering kinematics 

‣ OLAS supports stellar feedback induced core formation

‣ Constraining z~2 dwarf galaxy mass budgets 

‣ Independent analysis of cusp-core using dynamical mass profiles

PRELIMINARY RESULTS


