JESSIE HIRTENSTEIN

DYNAMICAL EFFECTS OF STELLAR FEEDBACK IN LOW MASS GALAXIES AT Z~2

In collaboration with: Tucker Jones, Xin Wang, **Andrew Wetzel**, **Kareem El-Badry**, Austin Hoag, Tommaso Treu, Maruša Bradač, Takahiro Morishita

THE CUSP-CORE PROBLEM

- Dark matter only simulations predict cusp-y central density profiles
- Observations reveal constant density cores

Dark matter only simulations

Observations

Del Popolo et al. (2016)

THE CUSP-CORE PROBLEM

- Dark matter only simulations predict cusp-y central density profiles
- Observations reveal constant density cores

WHERE IS STELLAR FEEDBACK MOST DYNAMICALLY SIGNIFICANT?

• Most dynamically effective with $7 \leq \log (M_*/M_{\odot}) \leq 9$, at $z \sim 2$

OSIRIS LENS-AMPLIFIED SURVEY (OLAS)

- IR spectrograph with AO + Integral
 Field Unit (IFU)
- Kinematic survey of lensed galaxies
 - Pre-selected for M_{*}, z, SFR, EL fluxes
 - 21 galaxies to-date
 - 8 ≤ log (M_{*}/M_☉) ≤ 9.8
 - ▶ 1.25 < z < 2.29

OVERVIEW OF SAMPLE – MASS VS SFR

OLAS pushes 1.5 orders of magnitude lower in M_{*}, SFR

EXAMPLE IMAGE PLANE KINEMATICS

Hirtenstein et al. 2019

INTEGRATED HII REGION VELOCITY DISPERSIONS

Velocity dispersion from width of integrated Ha emission line

Traces depth of potential well

RELATIONSHIP BETWEEN VELOCITY DISPERSION AND SSFR

Relationship is a result of feedback cycle, which may drive core formation

El-Badry et al. (2017)

COMPARING WITH THE FIRE SIMULATIONS

COMPARING WITH THE FIRE SIMULATIONS

Hirtenstein et al. 2019

COMPARING WITH THE FIRE SIMULATIONS

COMPARISON AT FIXED M*

- OLAS galaxies exhibit same trends as in FIRE
 - Over both 10 and100 Myr timescales
- OLAS samples at high end of sSFR

1-SIGMA AGREEMENT BETWEEN PREDICTED VS EXPECTED DISPERSION

OLAS supports feedback-induced core formation

Hirtenstein et al. 2019

- Does this relationship hold for lower mass galaxies?
- Need dynamical mass of galaxies
 - $M_{dyn} = M_* + M_{gas} + M_{DM}$
- Examining the DM distribution in high redshift dwarfs:
 - Cusp \rightarrow higher $f_{DM} \rightarrow$ lower f_*
 - Core \rightarrow lower $f_{DM} \rightarrow$ higher f_*

- Does this relationship hold for lower mass galaxies?
- Need dynamical mass of galaxies
 - $M_{dyn} = M_* + M_{gas} + M_{DM}$
- Examining the DM distribution in high redshift dwarfs:
 - Cusp \rightarrow higher $f_{DM} \rightarrow$ lower f_*
 - Core \rightarrow lower $f_{DM} \rightarrow$ higher f_*

- Does this relationship hold for lower mass galaxies?
- Need dynamical mass of galaxies
 - $M_{dyn} = M_* + M_{gas} + M_{DM}$
- Examining the DM distribution in high redshift dwarfs:
 - Cusp \rightarrow higher $f_{DM} \rightarrow$ lower f_*
 - Core \rightarrow lower $f_{DM} \rightarrow$ higher f_*

- Does this relationship hold for lower mass galaxies?
- Need dynamical mass of galaxies
 - $M_{dyn} = M_* + M_{gas} + M_{DM}$
- Examining the DM distribution in high redshift dwarfs:
 - Cusp \rightarrow higher $f_{DM} \rightarrow$ lower f_*
 - Core \rightarrow lower $f_{DM} \rightarrow$ higher f_*

- Does this relationship hold for lower mass galaxies?
- Need dynamical mass of galaxies
 - $M_{dyn} = M_* + M_{gas} + M_{DM}$
- Examining the DM distribution in high redshift dwarfs:
 - Cusp \rightarrow higher $f_{DM} \rightarrow$ lower f_*
 - Core \rightarrow lower $f_{DM} \rightarrow$ higher f_*

SUMMARY

- Observed direct relationship between sSFR and velocity dispersion
 - OLAS observations agree with FIRE gas kinematics to within 1σ
- Kinematic signature of feedback altering kinematics
- OLAS supports stellar feedback induced core formation

PRELIMINARY RESULTS

- Constraining z~2 dwarf galaxy mass budgets
- Independent analysis of cusp-core using dynamical mass profiles