completeness corrections and the small scale issues of the Milky Way

Stacy Kim

Small Galaxies, Cosmic Questions | Durham, UK | July 29, 2019

GAIA DR1 sky map

Two fundamental predictions of CDM

Nearly scale-free hierarchy of DM halos to Earth-mass scales!

missing satellites problem

a fundamental prediction of CDM

a fundamental prediction of CDM

DM only simulations of the Milky Way O(100) satellites

Garrison-Kimmel+ 2017

GAIA DR1 sky map

GAIA DR1 sky map

completeness corrections

completeness corrections

for each dwarf observed, with brightness M_{ν} ,

completeness correction

survey area

completeness corrections for each dwarf observed, with brightness M_{ν} , radial distribution completeness (plotted as a CDF) radius $R(M_{\rm v})$ percent observed within r radial No missing satellites! completeness (Kim+ 2018) orrection r (kpc) area sum for completeness total dwarfs each dwarf, correction with $M_{\rm V}$ MW total survey area

completeness corrections

for each dwarf observed, with brightness M_{ν} , dispersion σ_* ,

radial distributions

corrected velocity function

Dooley+ 2017, Barber+ 2014

predictions from simulations

implications for SIDM

corrected velocity function

Read+2016, Robles+ 2017

observational uncertainties

Geha+, private communication

observational uncertainties

Geha+, private communication

observational uncertainties

Geha+, private communication

velocity functions: a summary

CDM with baryons does a decent job explaining satellite kinematics but too many satellites with disk stripping

velocity functions: a summary

CDM with baryons does a decent job explaining satellite kinematics but too many satellites with disk stripping

SIDM with $\sigma_*/m > 0.3 \text{ cm}^2/\text{g}$ disfavored

velocity functions: a summary

CDM with baryons does a decent job explaining satellite kinematics but too many satellites with disk stripping

SIDM with $\sigma_*/m > 0.3 \text{ cm}^2/\text{g}$ disfavored

shape of corrected velocity function strongly dependent velocity uncertainties more precise measurements needed!

EXTRAS: MSP

corrected luminosity function

corrected luminosity function

dependence on reionization redshift

less massive subhalo

more massive subhalo

less massive subhalo

more massive subhalo

less massive subhalo

more massive subhalo

Stars in more massive subhalos orbit faster (to counteract gravity), thus velocities a proxy for mass!

less massive subhalo

more massive subhalo

Stars in more massive subhalos orbit faster (to counteract gravity), thus velocities a proxy for central mass!

Stars typically live in the centers of subhalos, and thus are sensitive to the presence of central cores vs. cups!