The Physics of Type Ia Supernovae Revealed in Dwarf Galaxies

Evan Kirby Caltech

Tycho supernova remnant – ESA/XMM-Newton

Collaborators

Mia de los Reyes Caltech

Justin Xie The Harker School

Rachel Guo Irvington High School

Ken Shen UC Berkeley Tony Piro, Andy McWilliam Carnegie Observatories

Maria Bergemann, Mikhail Kovalev MPIA Marten van Kerkwijk University of Toronto

There is more than one way to explode a white dwarf.

Model	Mass	Components		
А	sub- $M_{_{ m Ch}}$ or $M_{_{ m Ch}}$	double degenerate		
В	${ m sub-}M_{ m Ch}$	single degenerate		
С	$M_{ m Ch}$	single degenerate		

Yungelson & Livio 2000, ApJ, 528, 108

Dense white dwarfs are neutron-rich.

beta decay:

Conclusions:

- **Less massive** (less dense) white dwarfs will produce fewer neutron-rich isotopes, like **stable Ni**.
- Alternatively, **deflagration** can reduce the neutron output of M_{Ch} white dwarfs.

We measured Cr, Co, and Ni from existing DEIMOS spectra.

We measured Cr, Co, and Ni from existing DEIMOS spectra.

Sculptor's chemical evolution is easy to interpret.

Core collapse simulated yield Type Ia simulated yield

We used Sculptor's SFH to infer the Type Ia yield.

Core collapse simulated yield Type Ia simulated yield

Core collapse inferred yield

Type Ia inferred yield

The data favor sub-Chandrasekhar-mass explosions.

Kirby et al. 2019, ApJ, in press, arXiv:1906.10126

Theoretical yields:

S13: Seitenzahl et al. 2013, MNRAS, 429, 1156 F14: Fink et al. 2014, MNRAS, 438, 1762 L18: Leung & Nomoto 2018, ApJ, 861, 143 L19: Leung & Nomoto 2019, ApJS, accepted, arXiv:1901.10007 S18: Shen et al. 2018, ApJ, 854, 52 B19: Bravo et al. 2019, MNRAS, 482, 4346

The data favor sub-Chandrasekhar-mass explosions.

sub-M_{Ch}

Kirby et al. 2019, ApJ, in press, arXiv:1906.10126

The yields favor sub- $M_{\rm Ch}$ explosions.

Manganese is even more constraining than nickel.

Mia de los Reyes Caltech

But wait ... galaxies with extended SFH show higher [Ni/Fe].

Conclusion

The Type Ia supernova yields of iron-peak elements inferred from Keck/DEIMOS measurements of ancient dwarf galaxies favor **sub-Chandrasekhar-mass detonations**.

Sub- M_{Ch} Type Ia's struggle to make neutron-rich species, like stable Ni.

Seitenzahl & Townsley 2017, arXiv:1704.00415

Neutron excess influences stable iron-peak nucleosynthesis.

Isotope	Protons (Z)	Neutrons (N)	Nucleosynthesis	Site	Abundance
⁵² Cr	24	28	incomplete Si burning, normal NSE	${ m sub-}M_{ m Ch}?$	84%
^{55}Mn	25	30	normal NSE	$M_{ m Ch}$	100%
⁵⁴ Fe	26	28	normal NSE	$M_{ m Ch}$	6%
⁵⁶ Fe [†]	26	30	NSE	all supernovae	92%
⁵⁹ Co	27	32	α-rich NSE, <i>s</i> -process	?	100%
^{58}Ni	28	30	normal NSE	$M_{ m Ch}$	68%
⁶⁰ Ni	28	32	normal NSE	$M_{ m Ch}$	26%

 $^{\dagger 56}$ Ni + $e^- \rightarrow {}^{56}$ Co + ν_e 56 Co + $e^- \rightarrow {}^{56}$ Fe + ν_e

Ursa Minor shows a similar pattern to Sculptor.

Core collapse simulated yield Type Ia simulated yield

Core collapse inferred yield

Type Ia inferred yield

Sagittarius shows the same pattern.

△ Sagittarius
· MW disk
• MW bulge
• MW halo

Hasselquist et al. 2017, ApJ, 845, 162