AGN-DRIVEN OUTFLOWS IN SIMULATED DWARF GALAXIES

Small Galaxies, Cosmic Questions Durham, 30/07/19

Sophie Koudmani

with Debora Sijacki, Martin Bourne, and Matthew Smith

Koudmani+2019: MNRAS, 484, 2, 2047 https://doi.org/10.1093/mnras/stz097

DWARF GALAXIES & THE ACDM MODEL: A TESTBED FOR SIMULATIONS

(Apparent) Discrepancies:	Modify dark matter model:	Improve baryonic physics:
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Warm dark matter (e.g. Lovell+2012) Self-interacting dark matter (e.g. Vogelsberger+2014) Fuzzy dark matter (e.g. Marsh & Silk 2014)	Reionization (e.g. Efstathiou 1992, Okamoto+2008, Fitts+2016) Supernovae (may need additional stellar feedback mechanisms) (e.g. Navarro+1996, Governato+2010, Parry+2012, Garrison-Kimmel+2014, Hopkins+2014, Vogelsberger+2014, Kimm+2015, Emerick+2018, Smith+2018) AGN? (e.g. Wadepuhl & Springel 2011, Habouzit+2017, Silk 2017, Barai+2018, Bellovary+2018, Dashvan+2018, Trebitsch+2018)

OBSERVATIONAL EVIDENCE

SDSS search + X-ray follow-up (Chilingarian+2018):

305 IMBH candidates, 10 X-ray confirmed

Keck follow-up observations:

- 16 out of 20 isolated, quiescent dwarfs host central AGN-like line ratios (Dickey+2019)
- 9 out of 29 dwarfs with AGN signatures have high velocity ionized gas outflows (Manzano-King+2019)

Systematic searches in the COSMOS field:

- 40 dwarf galaxies with X-ray AGN out to z~2.4 (Mezcua+2018)
- 35 dwarf galaxies with radio AGN out to z~3.4 (Mezcua+2019)

5 out of 6 quenched low-mass galaxies with BPT classification 'AGN' have kinematically offset gas

See also: Greene & Ho 2004, 2007; Satyapal+2007, 2008, 2014; Desroches+2009; Dong+2012; Marleau+2013; Reines+2013; Moran+2014; Lemons+2015; Sartori+2015; Baldassare+2016,2017,2018; Pardo+2016; Mezcua+2016; Cann+2019; Graham & Soria 2019; Graham+2019; Kaviraj+2019

(km

AGN with outflows

 $\frac{0}{v_{esc}} \frac{300}{(\text{km s}^{-1})}$

AGN with SF outflow SF with outflows

INTERMEDIATE-MASS AGN LUMINOSITIES

- Analytical models of intermediatemass AGN in dwarfs look promising (Dashyan+2018)
- Previous numerical simulations mostly used Bondi accretion model (Wadepuhl & Springel 2011, Habouzit+2017, Barai+2018, Bellovary+2018, Trebitsch+2018)

 $\dot{M}_{\rm acc} = \dot{M}_{\rm Bondi} \propto M_{\rm BH}^2$

→ for IMBHs get low Eddington ratios $f_{\rm Edd} = \dot{M}_{\rm acc} / \dot{M}_{\rm Edd}$

We set constant high Eddington ratio to test maximum impact!

'Fast and energetic AGN-driven outflows in simulated dwarf galaxies', Koudmani et al. (2019), MNRAS, 484, 2, 2047

SIMULATION SET-UP

- Hydrodynamical simulations using the moving-mesh code AREPO (Springel, 2010)
- Super-Lagrangian
 refinement (Curtis & Sijacki, 2015)

log(T / [K])

- AGN activity (Curtis & Sijacki, 2015)
- Star formation & supernova feedback (Smith+2018)

SIMULATION SUITE

Isolated disc galaxies (noncosmological) with $M_{\text{stars}} = 2.1 \times 10^9 \text{ M}_{\odot}$ and a central black hole ($M_{\text{BH}} = 10^5 \text{ M}_{\odot}$)

Star formation efficiency $\varepsilon_{SF} = 0.015$ or $\varepsilon_{SF} = 0.15$

With added AGN feedback outflows are significantly faster and reach higher temperatures.

STAR FORMATION PROPERTIES

AGN activity only has a small effect on overall star formation rates. But no cosmological inflows!

'Fast and energetic AGN-driven outflows in simulated dwarf galaxies', Koudmani et al. (2019), MNRAS, 484, 2, 2047

STAR FORMATION PROPERTIES

AGN activity has a **significant** effect on **central** star formation rates.

- Stellar motions unaffected by feedback
- Supernova-driven outflows too slow to affect gas kinematics
- AGN-driven outflows disturb gas motions

- Stellar motions unaffected by feedback
- Supernova-driven outflows too slow to affect gas kinematics
- AGN-driven outflows disturb gas motions
- → inferred angular momentum vectors are misaligned by kinematic offset ΔPA

Galaxies with AGN activity significantly more likely to be 'offset'.

- Galaxies with AGN activity significantly more likely to be 'offset'.
- Star formation rate cut brings supernova only run into agreement with MaNGA.

CURRENT WORK

Isolated simulations: Fast and energetic outflows, but no significant effect on SFRs

Next step: fully self-consistent cosmological zoom-in simulations of high-redshift dwarfs

- Can AGN regulate star formation via hindering cosmic gas inflows?
- Build-up of dense gas from inflows and mergers renders SNe on their own too inefficient to expel gas (Smith+2019).
- Add AGN to this set-up: try different accretion/feedback models.

CONCLUSIONS & OUTLOOK

- AGN may be an important ingredient in dwarf galaxy models.
- We find that AGN activity
 - has a small effect on overall star formation rates.
 - has a significant effect on central star formation rates.
 - enhances outflows to much higher temperatures and much higher velocities, in agreement with observations from MaNGA.
- Current and future work
 - fully self-consistent cosmological zoom-in simulations
 - Test different environments and different black hole feedback prescriptions.

