Internal 3D kinematics of dwarf spheroidal galaxies with Gaia + HST

Davide Massari

Dipartimento Fisica e Astronomia - Universita' di Bologna Kapteyn Astronomical Institute – University of Groningen

Main collaborators: A. Helmi, E. Tolstoy, A. Mucciarelli, L. Sales

Gaia DR2, Gaia Collaboration+2018

Dwarf Spheroidals to investigate dark matter

>99%

PMs in dSph to investigate dark matter

Dynamics

Mass distribution

Test DM models

PMs in dSph to investigate dark matter

Dynamics

Mass distribution

Test DM models

BUT

No PMs = mass-β degeneracy

Golden era of Astrometry: *Gaia* DR2

Positions + Proper motions for 1.3 billion stars

Absolute proper motions:

- systemic
- easier to measure (large number of members helps)
- σ (absolute) = σ (single)/sqrt(N)
- ingredient to determine orbits

Internal proper motions:

- how stars move within a stellar system
- Most difficult to measure
- σ (PM) [km/s] < velocity dispersion
- ingredient to investigate the internal dynamics of a stellar system

Absolute proper motions:

- systemic
- easier to measure (large number of members helps)
- σ (absolute) = σ (single)/sqrt(N)
- ingredient to determine orbits

Internal proper motions:

- how stars move within a stellar system
- Most difficult to measure
- σ(PM) [km/s] < velocity dispersion
- ingredient to investigate the internal dynamics of a stellar system

Absolute proper motions:

- systemic
- easier to measure (large number of members helps)
- σ (absolute) = σ (single)/sqrt(N)
- ingredient to determine orbits

Internal proper motions:

- how stars move within a stellar system
- Most difficult to measure
- σ (PM) [km/s] < velocity dispersion
- ingredient to investigate the internal dynamics of a stellar system

$$\sigma$$
(PM) = sqrt(σ^2 (posl)+ σ^2 (posll)) / Δt

Absolute proper motions:

- systemic
- easier to measure (large number of members helps)
- σ (absolute) = σ (single)/sqrt(N)
- ingredient to determine orbits

Internal proper motions:

- how stars move within a stellar system
- Most difficult to measure
- σ (PM) [km/s] < velocity dispersion
- ingredient to investigate the internal dynamics of a stellar system

Proper Motions: HST

Proper Motions: Gaia

Sculptor dSph PM

Sculptor dSph PM

No systematic trends wrt colour, magnitude, position

First glimpse of what Gaia will enable in few years

- DR1 positions
- Few stars with precise PMs
- Location at R>R_h

Draco Dwarf Spheroidal

(Massari et al. submitted, arxiv.1904.04037)

Draco Dwarf Spheroidal

Draco dSph: proper motions

Draco dSph: proper motions

Draco dSph: LOS velocities

6 hours of observing time with DEIMOS@ Keck telescope

Draco dSph: membership

DRACO Dwarf Spheroidal

Draco dSph: velocity dispersions

Conclusions

Internal PMs of Sculptor

radial anisotropy
need to sample the core and improve PMs

Internal PMs of Draco

- Better PMs than Scl
- 45 stars with 3D kinematics
- Support for DM cusp

