HI-rich, ultra-diffuse galaxies lie way above the baryonic Tully-Fisher relation Kyle Oman (Kapteyn Institute → Durham ICC)

HI-rich, ultra-diffuse galaxies lie way above the baryonic Tully-Fisher relation Kyle Oman (Kapteyn Institute → Durham ICC)

HI-rich, ultra-diffuse

Pavel Mancera Piña

Filippo Fraternali, Betsey Adams, Antonino Marasco, Tom Osterloo

Lucas Leisman

Michael Battipaglia, John Cannon, Lexi Gault, Martha Haynes, Steven Janowiecki, Elizabeth McAllan, Hannah Pagel, Kameron Reiter, Katherine Rhode, John Salzer, Nicolas Smith

galaxies lie way above the baryonic Tully-Fisher relation

Kyle Oman (Kapteyn Institute → Durham ICC)

Sample & Method

• Parent sample from Leisman et al. (2017), 30 objects

Sample & Method

- Parent sample from Leisman et al. (2017), 30 objects
- UDGs : from SDSS, $\langle \mu_r(R_e) \rangle \geq 24 \, \mathrm{mag}/\mathrm{arcsec}^2$ and $R_e > 1.5 \, \mathrm{kpc}$
- \bullet Gas rich : from ALFALFA, $M_{\rm HI} \sim 10^9 \, {\rm M}_{\odot}$
- \bullet Isolated : any ALFALFA detections within $500\,{\rm km/s}$ has $D>350\,{\rm kpc}$
- Observed with Karl G. Jansky Very Large Array (C configuration), or Westerbork Sythesis Radio Telecope
- 6 objects with useable data, kinematic modelling using 3D-BAROLO

Baryon-dominated within $R_{\rm out}$

Systematic errors, biases

- **Distance** At 70-90 Mpc Hubble flow is robust.
- **HI mass** ALFALFA & VLA/WSRT fluxes agree.
- Stellar mass $M_{\star} \ll M_{\rm HI}$
- Outer radius 7-18 kpc should reach flat part of rotation curve.
- Beam smearing 3D-BAROLO convolves beam with model to compare with data.
- Inclination All 6 galaxies would need $i \sim 10 20^{\circ}$.

Systematic errors, biases

Oman et al. (2015)

Systematic errors, biases

- **Distance** At 70-90 Mpc Hubble flow is robust.
- **HI mass** ALFALFA & VLA/WSRT fluxes agree.
- Stellar mass $M_{\star} \ll M_{\rm HI}$
- Outer radius 7-18 kpc should reach flat part of rotation curve.
- Beam smearing 3D-BAROLO convolves beam with model to compare with data.
- Inclination All 6 galaxies would need $i \sim 10 20^{\circ}$.

Inclination tests

- Sample of 4 simulated galaxies from the APOSTLE suite.
- Similar HI masses to HI-rich UDG sample, but lie on BTFR.
- "Observed" at several inclinations using MARTINI code.
- Matched beam, S/N, distance, channel width, etc.
- Construct models at different inclinations and compare to "observations".

Inclination tests

- Sample of 4 simulated galaxies from the APOSTLE suite.
- Similar HI masses to HI-rich UDG sample, but lie on BTFR.
- "Observed" at several inclinations using MARTINI code.
- Matched beam, S/N, distance, channel width, etc.
- Construct models at different inclinations and compare to "observations".

Inclination tests

- Sample of 4 simulated galaxies from the APOSTLE suite.
- Similar HI masses to HI-rich UDG sample, but lie on BTFR.
- "Observed" at several inclinations using MARTINI code.
- Matched beam, S/N, distance, channel width, etc.
- Construct models at different inclinations and compare to "observations".

Kinematic modelling tests

- Same mock-observed sample from APOSTLE.
- Fully blind analysis.
- \bullet Reliably recover V_{\max} within estimated error.

Finally some cosmology

- High spin ↔ low concentration DM halos?
 - V_{\max} drops and occurs further out.
 - \blacktriangleright Need to be in $\sim 4-5\sigma$ tail of distribution.
 - Given parent survey volume expect $\ll 1$ such object.
- MOND?
 - Fail strong prediction for BTFR: $M_{\rm bar} \propto V^4$.

Finally some cosmology

- Extremely inefficient feedback?
 - Helps explain extreme $M_{\rm bar}/M_{\rm dyn}$.
 - Consistent with low velocity dispersions.
 - May conflict with some dwarf formation models, e.g. feedback-driven UDG formation, dark matter core formation.

Finally some cosmology

- Out of dynamical equilibrium?
 - Why should 6 out of 6 be out of equilibrium?
 - What prevents them from equilibrating?
- Triaxial DM haloes?
 - Should cause over- and underestimates of $V_{\rm max}$ with equal probability.

Missing dark matter in dwarf galaxies?

- With only ~2 "clear" examples, conclusions were tentative.
- We attributed "missing DM" in DDO 50 to an inclination error.
- Not quite in the UDG regime with $\mu_{R,0} = 22.5$, but seems like an interesting, well-resolved target.
- Time to revisit other previously dismissed "BTFR outliers"?

Oman et al. (2016)

Summary

- Seemingly real outliers of the BTFR, with bizarre implications.
- Time to revisit outliers in other areas? The LSB Universe seems to be full of surprises.

Mock HI observing:

Kinematic modelling:

Title slide visualization:

github.com/kyleaoman/martini

editeodoro.github.io/Bbarolo/

github.com/Punzo/SlicerAstro