

Dark matter heats up in dwarf galaxies

Justin I. Read

Matthew Walker, Pascal Steger, Oscar Agertz, Michelle Collins, Denis Erkal, Giuliano Iorio, Filippo Fraternali, Alexandra Gregory, Matthew Orkney, Andrew Pontzen, Martin Rey The Cusp-Core Problem

The Cusp-Core Problem

WLM; Leroy, Nature 2015

e.g. Flores & Primack 1994; Moore 1994; Read et al. 2017

e.g. Flores & Primack 1994; Moore 1994; Read et al. 2017

e.g. Flores & Primack 1994; Moore 1994; Read et al. 2017

Dark Matter Heating

 $\Delta x = 4 \text{ pc}$ $M_{\text{res}} = 300 \text{ M}_{\odot}$ $\rho_{\text{th}} = 300 \text{ atoms/cc}$ $T_{\text{gas,min}} = 10 \text{ K}$

e.g. Navarro et al. 1996; Read & Gilmore 2005; Pontzen & Governato 2012; Read et al. 2016

Read et al. 2016

Read et al. 2016

The Cusp-Core Problem Revisited

Read et al. 2016b,2017

Read et al. 2016b,2017

"Smoking gun" evidence for DM heating

Less star formation \Rightarrow more cusp

Less star formation \Rightarrow more cusp

Leroy, Nature 2015

Rotation curves

Fornax

Robert Lupton & SDSS

Draco

Stellar kinematics

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634; Gregory et al. 2019

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634; Gregory et al. 2019

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634; Gregory et al. 2019

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634; Gregory et al. 2019

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634; Gregory et al. 2019

Implications

Agertz et al. 2019 | arXiv:1904.02723

Implications | Tides

Read et al. 2006; Peñarrubia et al. 2010; Errani et al. 2019

Conclusions

- We have found evidence for "dark matter heating" in nearby dwarf galaxies.
- If correct, this solves the cusp-core problem (at least for the smallest dwarfs).
- Implications \Rightarrow
 - Dark matter appears to be a cold, collisionless, fluid that can be heated up and moved around.
 - Densest dwarfs constrain "beyond-CDM" models.
 - Dark matter heating will impact galaxy formation from the "bottom up". We are exploring this with EDGE.

Justin I. Read