Accretion Activity in Dwarf Galaxies: Key Diagnostic Tools

Shobita Satyapal George Mason University

Overview: Why do we care?

- AGNs can be an important source of feedback
- Quench star formation
- Reduce the number of DGs
- Can help mitigate "too-big-to-fail" problem
- Impact on the core density profile of DGs

(Silk 2017)

Overview: Why do we care?

AGN feedback in DGs cannot be ignored

Theory

- Koudmani et al. 2019
- Reagan et al. 2019
- Barai et al. 2019
- Zubovas 2018
- Dashyan et al. 2018

Observations

- Manzano-King et al. 2019
- Mezcua et al. 2019
- Dickey et al. 2019
- Kaviraj et al. 2019
- Penny et al. 2018
- Bradford et al. 2018

Overview: Why do we care?

- IMBHs crucial for understanding origin of SMBHs
- IMBHs mergers are prime targets for LISA
- IMBHs can teach us about fundamental physics of accretion in low mass regime

Volonteri et al. 2008

The Problem: Low mass SMBHs are hard to find!

Sphere of influence of a 10^5 M_{\odot} black hole at 10 Mpc is only 0.01"

The black hole mass desert

There is no direct evidence for black holes between 60-1x10⁴ $\rm M_{\odot}$

IMBHs can only be found when accreting

Goal: Hunt for AGNs in low mass galaxies

Challenges

AGN identification

Adapted from D. Alexander

Challenges

AGN identification

Radio from jet X-rays from corona **MIR from Torus** Optical from disk/NLR X-rays can be absorbed **XRB** contamination Optical can be obscured Host galaxy dilution **AGNs** Slide credit:

Adapted from D. Alexander

Limitations with X-ray Diagnostics

(Mineo et al. 2014)

(Fragos et al. 2013)

Contamination by XRBs
X-ray enhancement with metallicity
Also ULXs?

More significant in low mass galaxies

Challenges

AGN identification

X-rays from corona

Optical from disk/NLR

MIR from Torus

Radio from jet

- X-rays can be absorbed
- XRB contamination
- Optical can be obscured
- Host galaxy dilution
- IR sensitive only to dominant AGNs
- Only 10% AGN are radio loud

Slide credit: Adapted from D. Alexander

Limitations with Optical Diagnostics

• Dust obscuration (LLAGN can have very high N_H; Annuar et al. in prep, Ricci et al. 2015)

•Optical lines dominated by SF

•Overlap in low metallicity AGNs with SF on BPT

More significant in low mass galaxies

Limitations with Optical Diagnostics

• Dust obscuration (LLAGN can have very high N_H; Annuar et al. in prep, Ricci et al. 2015)

•Optical lines dominated by SF

•Overlap in low metallicity AGNs with SF on BPT

More significant in low mass galaxies

Limitations of Optical Diagnostics

Groves et al. (2008)

Low Metallicity AGNs Look like SF Galaxies

Limitations with Optical Diagnostics

•Type II SNe can look like AGNs

•L_{Hα} from broad lines comparable to SNe (e.g. Greene & Ho 2007)

•Majority of broad lines in SF dwarfs fade within a few years (Baldassare et al. 2016)

(Fillipenko 1987)

Limitations of Optical Diagnostics

Cann et al. 2019

Low Mass AGNs Look like SF Galaxies

Optically Identified AGNs: Almost all in Massive Bulge-dominated Hosts

(Kauffmann et al. 2003)

Only ~1% of dwarf galaxies host AGNs based on optical and X=ray surveys (e.g., Reines et al. 2013, Pardo et al. 2016)

Challenges

AGN identification

X-rays from corona

Optical from disk/NLR

MIR from Torus

Radio from jet

- X-rays can be absorbed
- XRB contamination
- Optical can be obscured
- Host galaxy dilution
- IR sensitive only to dominant AGNs
- Only 10% AGN are radio loud

Slide credit: Adapted from D. Alexander

Challenges

AGN identification

X-rays from corona

Optical from disk/NLR

MIR from Torus

Radio from jet

- X-rays can be absorbed
- XRB contamination
- Optical can be obscured
- Host galaxy dilution
- IR sensitive only to dominant AGNs
- Only 10% AGN are radio loud

Slide credit: Adapted from D. Alexander

Can't see IMBHs with current tools?

Infrared Spectroscopic Diagnostics THE POWER OF JWST

- Insensitive to extinction
- Insensitive to dilution by SF
- No confusion with XRBs, ULXs

Robust way to find low luminosity AGNs

Infrared Spectroscopic Diagnostics THE POWER OF JWST

- Insensitive to extinction
- Insensitive to dilution by SF
- No confusion with XRBs, ULXs

Robust way to find low luminosity AGNs

Photoionization Models

AGN SED

Extreme Starburst SED

LLAGN: The Power of JWST

LLAGN: The Power of JWST

Satyapal et al. 2019, in prep

The Power of Infrared Spectroscopic Diagnostics

- Spitzer finds AGNs in low bulge mass regime
- No sign of AGN in optical
- Detection rate 4X higher than optical studies

(Satyapal et al. 2007,2008, 2009)

IR Spectroscopy Diagnostic Potential

- Lower mass black holes have hotter accretion disks
- Harder SED can result in emission from higher ionization species

Black hole mass indicator?

Simulated Spectra

Cann et al. 2018

IR Spectroscopy Diagnostic Potential

Cann et al. 2018

High ratios uniquely identify low mass black holes

IR Spectroscopy Diagnostic Potential

Cann et al. 2018

Diagnostic Line Ratios (10⁴ M_{\odot} < M_{BH} < 10⁶ M_{\odot})

Initial comparisons to observations in high-mass regime

- [Si VI]1.962/[SiX]1.430 line flux ratios from BASS
- Masses of observed black holes generally around 10^7 $10^8 M_{\odot}$

Cann et al. 2018

First Detection: J1056+3138

Cann et al. 2019b, submitted

First Detection: J1056+3138

- MIR AGN
- [Si VI]19628A
- Broad Paα
- 0.25x Eddington accretion

Cann et al. 2019b, submitted

Key Take Away Points

- Dearth of IMBHs could be in part due to bias introduced by wrong set of tools to find them
- IR coronal lines may be the best way to find them
- IR coronal lines may provide insight into their mass and accretion properties
- Pilot study of J1056+3138 proves efficacy of these for BH detection in low mass, low metallicity regime

View optical and X-ray surveys of AGNs in dwarf galaxies with caution

"The real voyage of discovery consists not in seeing new landscapes, but in looking with new eyes." -Marcel Proust

Stay tuned for JWST

