Evolution of planes of satellites

Shi Shao (邵实) Institute for Computational Cosmology, Durham University

with Marius Cautun, Alis Deason, Adrian Jenkins, Carlos Frenk

Comparison to simulations

- We use the EAGLE hydrodynamical simulation.
- We use MW-mass haloes to construct
 mock satellite
 catalogues.

For each, only $\sim 1\%$ satellite systems in the simulation are as rare as our MW.

Comparison to simulations

Find 'the One' in Eagle matrix!

~1,000,000 EAGLE galaxies in 100 Mpc³ ~2000 MW-mass with $M_{200} \in [0.5, 2] \times 10^{12} M_{\odot}$

- + Sats orbitally thin
- + Sats perpendicular to their central

 - And then you find ...

Sat plane face-on

600 Kpc

 \circ

- Disc edge-on
- Sat plane face-on

000	 Disc edge-on
z = 2.99	 Sat plane edge-on
t = 11.6 Gyr	
c/a = 0.35	

2.0 Mpc

A twisted MW halo?

The awakening (Zoom-in) of the One

MagPie simulations

Preliminary!

MagPie simulations

Preliminary!

- 8 out of the 11 MW classical satellites have roughly co-planar orbits. • This is atypical in LCDM, with only $\sim 1\%$ of EAGLE systems showing a similarly high degree of co-rotation.
- The satellite rotation plane is very well aligned with the shape of the DM halo —> can infer the orientation of MW dark halo.
- In the MW, the satellite rotation plane is perpendicular to the MW disc —> MW dark halo is twisted.
- to cosmic web accretion.
- Stay tuned for more MagPie results!

• The twist is due to changes in the orientation of the MW dark halo due

Orbital evolution of LMC-mass sat.

