Debris from dwarf satellites in the Auriga simulations

Christine Simpson University of Chicago

Ignacio Gargiulo Facundo Gómez Rob Grand

and The Auriga Collaboration

arXiv:1905.09842

AURIGA disks HIGH-RESOLUTION SIMULATIONS OF MILKY WAY-SIZED HALOS (Grand et al. 2017)

The Set-up & Physics

- \bullet Cosmological zoom simulations of $10^{12}\,M_{\odot}$ halos
- \bullet baryon cell/particle mass ~6 x 10^3 M_{\odot} for 6 halos; ~5 x 10^4 M_{\odot} for 40 halos
- Second-order hydrodynamics on a moving mesh (AREPO)
- MHD, SF & stellar feedback, AGN feedback, UV background, atomic & metal line cooling

Satellites in Auriga

Surviving satellite Luminosity Functions

Many satellites don't survive but they are still present in the Galaxy

Pre-Gaia Picture

Ibata et al. 2019

Bullock & Johnston 2005

Motions of 7,000,000 Gaia stars

New GAIA Picture

We should expect debris to remain correlated in phase space longer than in position space

Accreted material in Auriga shows a diversity of phase space structure

- (Currently) Highest resolution Auriga simulations: 5 x 10³ M_☉ per star particle
 - Accreted stars in 2.5 kpc sphere positioned 8 kpc from center are shown

Grand et al. 2017

Satellite-Host Disk connection

Angle between Lorb and Lhost-disk

Red: Dark Satellites Cyan: Luminous satellites

Chemical and dynamical cuts (aka GAIA doesn't have accretion flags)

- Apply cuts in Fe, Mg, and circularity
- Structures in this case created by massive satellite (Mstar = 5 x 10⁹ Msun) disrupted 3 Gyr ago

Mock Observations: Aurigaia

- Use mock-Gaia catalogues of our simulations (Grand et al. 2018).
- Two methods applied with different assumptions about phase space smoothing (HITS,ICC)
- Use a 3 component fit for the galaxy potential with mock (use true potential for simulations)

Mock Observations: Aurigaia

- 2pt correlation functions measure the excess of star pairs as a function of their velocity difference
- Low velocity difference excess doesn't seem to correlate with phase space structures
- High velocity excess does not indicate
 a counter rotating disk

Satellite Quenching in Auriga

Is the MW typical? The SAGA survey

Conclusions

- Auriga hosts satellite debris that can be seen in position & phase space
- There is a diversity in accreted structures between halos
- Mock observations are necessary to make observational predictions, but challenges remain in this step of the process
- Future work will entail connecting debris structures to progenitor properties & orbits and modifying simulations to better capture dynamical mixing

A note on 'stretching'

Child star c comes from Parent particle p:

$$\mathbf{r}(c) = \mathbf{r}(p) + \mathbf{dr}$$
$$\mathbf{v}(c) = \mathbf{v}(p) + \mathbf{dv}$$

$$E_{kin}(c) = E_{kin}(p) + v(p) \cdot dv + 0.5 dv^2$$

Even if $E(p_1) = E(p_2)$, the energy of their children won't be $E(c_1) \neq E(c_2)$

Chemical and Dynamical Selection cuts

