Dark matter properties of dwarf galaxies in the GAIA era ____

Louis E. Strigari (Texas A&M University) Small Galaxies, Cosmic Questions Durham University July 30, 2019

Now able to measure 3 velocity components of stars in dSphs

•What can this tell us about dark matter?

Proper motion

Dark matter properties of dwarf satellites

- · Jeans-based equilibrium models
- Corrections from non-spherical potentials
- Self-consistent distribution function-based models
- Orbit-based models
- Action/angles
- Integrated mass within characteristic radius is wellmeasured

Walker et al. 2007

Multiple stellar populations in dwarf galaxies

- Some dwarf galaxies (Sculptor, ANDII) show evidence for multiple stellar populations
- Some kinematic studies disfavor NFW for Sculptor (Walker & Penarrubia 2011; Amorisco & Evans: Agnelle & Evans 2012)
- · Some studies show NFW cannot be ruled out for Sculptor (Breddels & Helmi 2014; Strigari, Frenk, White 2014)

Multiple stellar populations in dwarf galaxies

- · Some dwarf galaxies (Sculptor, ANDII) show evidence for multiple stellar populations
- Some kinematic studies disfavor NFW for Sculptor (Walker & Penarrubia 2011; Amorisco & Evans: Agnello & Evans 2012)
- Some studies show NFW cannot be ruled out for Sculptor (Breddels & Helmi 2014; Strigari, Frenk, White 2014)

Internal proper motions with HST

- Sculptor requires PMs ~ 22 micro-arcsec/year
- Positional accuracy of 0.003 ACS/WFC per epoch
- For N exposures, the positional accuracy per exposure is 0.003 sqrt(N)
- For N ~5-19, positional accuracy per exposure is ~ 0.01 pixel

Sohn, Patel et al. 2017

Internal stellar proper motions

Sculptor Draco $\sigma_R = 11.5 \pm 4.3 \text{ km s}^{-1}$ $\sigma_T = 8.5 \pm 3.2 \text{ km s}^{-1}$ $\sigma_R = 11.0^{+2.1}_{-1.5} \text{ km/s}, \sigma_T = 9.9^{+2.3}_{-3.1} \text{ km/s}$ -33.8 1 С 0.8 $\operatorname{err}(\mu_{\delta}) \, [\max/\operatorname{yr}]$ 0.6 -33.82 0.4 19 စာ -33.84 စာ -33.84 ပ ခ -33.86 0.2 1 20 -33.88 -33.9 14.981 21 15 0.5 ^{15.02} ^G飛∾A. [deg] 19 20 0 0.5 1.5 2 G-G_{BP}

Massari et al. 2018, 2019

Require transverse velocity dispersions to ~ 1 km/s (LS, Frenk, White 2018)

Kinematics of the Sagittarius dwarf galaxy

David R. Law UCLA

Sagattarius velocity samples

- Several samples of velocity in the central core of Sagittarius (Majewski et al. 2012; Frinchaboy et al. 2012; McDonald et al. 2012)
- Evidence of a "cold spot" in the center

Sagittarius velocity dispersion

Andrew Pace & LS 2019

RR Lyrae in Dark Energy Survey

Stringer et al. 2019

RR Lyrae in Dark Energy Survey

Stringer et al. 2019

RR Lyrae in Dark Energy Survey

Stringer et al. 2019

RR Lyrae in the core of Sagittarius

Peter Ferguson et al. 2019

Orbits of dwarfs in simulations

- Fornax analogues in APSOTLE show a range tidal disruption possibilities (Mei-Yu Wang, Azi Fattahi et al. 2017)
- Difficult to match the kinematics & the orbital dynamics simultaneously
- Best model: Stream with surface brightness ~ 32 mag/arcsec^2 (DES, LSST?)

Stellar streams around dwarf galaxies?

Fornax: Wang et al. (DES Collaboration) 2018

Omega Centauri

Omega Centauri

b

-38 -

-40

-42

Declination [degrees] -48 -46 -44

-50

-52

-54

-56

Omega Centauri

-0.5

-1.0

0.1

- Best fit dark matter spectrum: 31 GeV ٠
- Sensitivity to much lower annihilation cross ٠ sections that dSphs or Galactic center
- Deeper radio observations ٠

Reynosa-Cordova et al. 2019

10

100

1

Photon energy E_{γ} [GeV]

Declination [degrees] -56 -54 -52 -50 -48 -46 -44 -42 -40

38

In the upcoming years

- Obtain velocity dispersions from Gaia DR3?
- 6D view of Sagittarius and other dSphs?
- Revisit possibility of dark matter in globular clusters

