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New Physics Modules:
Star formation (Schaye & DallaVecchia 2008)

SN Feedback (DallaVecchia & Schaye 2008)
Radiative Cooling (Wiersma, Schaye & Smith 2008) (
Chemodynamics (wWiersma et al. 2009) f’f
AGN Feedback (Booth & Schaye 2009a) ‘
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AN EXAMPLE:
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AGN MODEL

Variant on Springel et al. 2005, Di Matteo et al. 2008

The model has three components:
e Black hole formation

==> results robust for ‘reasonable’ parameter values

e Black hole growth (mergers and gas accretion)

e AGN feedback

. 2
Ffeed = €se,mpuc” At

i —dEaeceliiciency €x, IS the major ettt
controls the mass of BHSs



AGN MODEL

By necessity very crude!

“orossly leap over five orders of magnitude”

However!
At this resolution results are robust
so long as two criteria are met:

|. Accr. rate Increases with density
2. Accr. rate reaches Eddington

Assume gas can get into BHSs
Posters: Alex Hobbs (4.8) Paramita Barai; Talks: e.g. Chris Power, Phil Hopkins
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4. WHAT DETERMINES THE
MASSES OF SUPERMASSIVE
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€+ controls the total
mass In BHs
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THE EFFECT OF AGN FEEDBACK

McCarthy et al. (2009)

Red=AGN Blue=No AGN
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THE EFFECT OF AGN FEEDBACK

McCarthy et al. (2009)

Red=AGN Blue=No AGN

2.50 '
AGN decrease gas fractions In
1.67 _ T . 2fOICIBIS
: /////////f/%/ Which prevents excessive accumulation
— B Z ‘q‘4ﬂ;445;? A §
S of baryons in the halo centre
7\
0.75F \ -
REF
————————— AGN
0.50 ! |

0.01 0.10 1.00
r/Ts00



THE EFFECT OF AGN FEEDBACK

McCarthy et al. (2009)

Red=AGN Blue=No AGN

AGN decrease gas fractions In

oroups

Which prevents excessive accumulation
of baryons In the halo centre

Bringing K-band magnitudes In line
with observations

Lis(rso0) (Lkso)

Lin & Mohr (2004), Horner (2001)
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THE BH POPULATION

Booth & Schaye (ZOO9a)
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see also e.g. Di Matteo et al. (2008)
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THE BH POPULATION

Booth & Schaye (20092)
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THE BH POPULATION

Booth & Schaye (ZOO9a)
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THE EFFECT OF AGN

» Note, these simulations were tuned only to match the amount
@RI oL still reproduice

» BH-galaxy connection.

Also black hole fundamental plane

* [hermodynamic properties of groups and clusters

Also entropy profiles, metal profiles, etc.

» Properties of central galaxies.

Also distribution of stellar ages, etc.

 What, then, can we learn from these simulations?
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WHAT DETERMINES THE
MASSES OF SUPERMASSIVE
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WHAI DETERMINES THE
MASSES OF SUPERMASSIVE
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X/X(€,=0.15)

WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

Dashed line shows slope of -|
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X/X(€,=0.15)

WHAT DETERMINES THE
MASSES OF SUPERMASSIVE

T energy feedback 1s made half as efficient
the BH just grows twice as massive so

J the total energy output remains invariant
l BHSs adjust thelr masses to
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B This implies that BHs are growing until they have
10°) output some critical energy oy"

r 9} for selfregulation. What

\VWhat DOES this critical energy correspond to? &
Something to do with the galaxy! the halo!
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WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

At the galactic centre the gravitational potential
s dominated by baryons.

What happens If they are removed?
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WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

At the galactic centre the gravitational potential
s dominated by baryons.

What happens If they are removed?
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The BHs do not care about the matter
distribution on small scales




WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

Self regulation occurs on scales > the galaxy
» Simulated siopeiiSSEEEPis
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WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

Self regulation occurs on scales > the galaxy
» Simulated siopeiiSSEEEPis
» Observed sioperEoassEEl

see also Dutton et al. (2010)



WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

- Comparing energy output by a BH to halo gravitational
binding energy:

: 2 G M 3
Fceq = €ese;mpuce” At mpy X U halo my, él

Ihalo
(€.g. Sk SERecsHIEEE)

* For the case of an NFW halo with concentration, ¢

c 1 2In(1+c2)\ .
MBH X : - . 5 = : — _ _ .‘rv .’nv/
(In(1+¢) —¢/(1 +¢)) (1+cH)? 14




WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

- Comparing energy output by a BH to halo gravitational
binding energy:

: 2 G M 3
Fceq = €ese;mpuce” At mpy X U halo my, él

Ihalo
(€.g. Sk SERecsHIEEE)

* For the case of an NFW halo with concentration, ¢

IMBH X ¢ 1 — 1 - 21 (1 + W) m>/3 ~ ‘O. |
"\ (In(1 +¢) — /(1 + ¢))? (1+ c)2 T v [E (e.g. Neto et al. 2007)



WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

* SimulatedsiopefliNsSEEieE

» Observed slopefiioSERiEy
» [heoretical sloper BSEEEEIES




WHAI DETERMINES THE
MASSES OF SUPERMASSIVE

» Comparing energy output by a BH to halo gravitational
binding energy:

: 2 G M 3
Fioeq = €seempuc” At mpy X U halo my, él

Ihalo
(€.g. Sk SERecsHIEEE)

* For the case of an NFW halo with concentration, ¢

MBH X ¢ 1 — 1 21 (1+e ) m2/3 ~ 0.
PP (1 +0) /(1 +0)) (1+ cZeL)2 1+c —1 ™ O = (e NetolcRaluiten

* Prediction: [f BH mass Is determined by DM halo binding
energy there should be a relation between residual in the
MBH-Mhalo relation and halo concentration
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* SimulatedsiopefliNsSEEieE

» Observed slopefiioSERiEy
» [heoretical sloper BSEEEEIES
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WHAI DETERMINES THE

-----------------------

* SimulatedsiopefliNsSEEieE

» Observed slopefiioSERiEy
» [heoretical sloper BSEEEEIES

Correlation between Amar
2lie) @

0=029 : P=0.9998

O g Strong and positivel



CONCLUSIONS

* A simple model, tuned to match the density in BHs in the local
universe matches both the observed BH demographics and
produces realistic massive galaxies, groups and clusters

» BH masses are insensitive to the properties of their host galaxy

EENRaic dependent on the properties of thelr DMihacesHlN s

a way that BH mass scales with the gravitational binding energy of
the DM halo.



