Exploring structure around submm-bright QSO

Francisco J. Carrera (IFCA, CSIC-UC, Spain/Imperial, UK), M.J. Page (MSSL-UCL, UK), J.A. Stevens (CAR, U. Hertfordshire, UK), R. Ivison (ROE, UK), S. Falocco (IFCA, CSIC-UC, Spain), Jacobo Ebrero (SRON, NL)

Summary: We have assembled a sample of X-ray and submm luminous QSOs which are therefore both growing their central black holes through accretion and forming stars copiously (Stevens+05). They are also surrounded by submm source overdensities (Stevens+10), placing them in the centres of high density peaks of the z~2 Universe, probably giving rise to massive ellipticals like those seen in the local Universe. We explore in detail here the field around one of those QSO: RX J0941 (z=1.82). Radio observations confirm the submm source detections and pinpoint the optical/NIR/MIR counterparts. We have used photometric redshifts and SED matching, showing that at least 4 of the 5 submm sources are associated to the QSO, with very little room for AGN contribution. These are mature galaxies with BH-to-stellar mass ratios about one dex below local values: most of their central BH mass is still to be accreted, which can happen in a few tens of My. The total mass is similar to that of a present-day cD **galaxy** and local stellar-to-BH masses can be reached if $\leq 3\%$ of the available gas mass is accreted.

Nature of the submm sources

- Stevens+10: 5 submm sources (3 in 850µm, 4 in 450µm, 2 in common)
- All detected in radio: VLA (6cm), GMRT (20cm) \Rightarrow Submm sources are real and their optical/IR counterparts can be identified
- Detecting counterparts in RiZJK+Spitzer (4.5, 8, 24µm)
- Photometric redshifts using hyperz, fitting Rowan-Robinson+08 (MRR08) galaxy templates to RiZJK, 4.5µm, 8µm
- L_{IR} and SFR from rescaling of luminosity-dependent SEDs from Chary & Elbaz (2001, CE01) to 450µm and 850µm fluxes
 - Dust mass from grey-body (Martínez-Sansigre+09)
- Stellar mass M_* from M_{κ} (Borys+05) calculated from best fit MRR08 template

Source	z	L _{IR}	SFR	M _{dust}	logM _*	Flux (µJy)
		$(10^{13} L_{\odot})$	(M _☉ /y)	$(10^8 M_{\odot})$	$(\log M_{\odot})$	6cm/20cm
850_1/450_1	1.82	2.4	4100	5-22	-	194/650
850_2/450_2	1.85	2.2	3800	4-23	11.6	313/674
850_3	1.85	0.5	900	2-6	11.5	28/<96
450_3	2.8	2.1	3600	4-25	11.3	28.5/<81
450_4	1.85	1.4	2400	3-16	11.5	71.8/189

To the NW of the central region shown

Instituto de Física de Cantabria

REFERENCES

- • Borys C., et al., 2005, ApJ, 635, 853
 - Chary R., Elbaz D., 2001, ApJ, 556, 562
 - Kovács A., et al., 2006, ApJ, 650, 592
 - Marconi A., Hunt L., 2003, ApJ, 589, L21
 - Marconi A., et al., 2004, MNRAS, 351, 169
- Martínez-Sansigre A., et al., 2009, ApJ, 706,184
- Page M.J., et al., 2010, MNRAS, submitted
- Rowan-Robinson M.J., et al., 2008, MNRAS, 368, 697
- Stevens J.A., et al., 2010, MNRAS, in the press
- Stevens J.A., et al., 2005, MNRAS, 360, 610

