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1. Introduction

Seyfert activity - otherwise normal spiral galaxies light up,
when enough gas is accreted onto the centre
* core luminosity comparable to stars of whole

galaxy
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Idea: better understand the distribution of gas and dust near galactic nuclei
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2. Motivation L Ipc

| 4 mas

« torus morphology revealed by MIDI
o find two-component structure

Circinus
ionisation cone
(visible, 8, = 90%)

NGC 1068 Raban et al., 2008

outflow

NGC 1068
« hot (800K) thin disc (1.35 x 0.45 pc)

. cold (300K) larger torus (3.0 x 4.0 pc)

cone edge

__in H, and Ha Circinus
«warm (330K) thin disc ( 0.4 pc)

. slightly colder (300K) clumpy

disk
torus (2 po)

Tristram et al. 2007

lonisation cone
(obscured)



. Radiative transfer modelling SelE B IR0 038
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 infer dust morphology

e parameter study for various
clumping parameters in a toy
model

* simultaneously account for high
spatial resolution data as well as
visibility information

== good idea of structural properties of tori
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. Radiative transfer modelling SelE B IR0 038

 infer dust morphology

e parameter study for various
clumping parameters in a toy
model

« simultaneously account for high
spatial resolution data as well as
visibility information

» good idea of structural properties of tori

However: * Where does the gas come from?
 How are tori stabilised against gravity?
« What governs the dynamics of tori?

Hydrodynamical torus models

m— needed, which produce similar
gas morphologies



4. Effects of an evolving nuclear star cluster: Observations
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realise with hydrodynamical simulations



5. Global strategy

(sub-) parsec scale (torus)

stars determine

potential, mass-
loss and velocity

predict £ N
[ J( ..... v
.

inflowing gas & dust

&

produces inner : predict 0
torus structure foim e »
turbulent mass input \< J/
yields larger-scale gas
distribution

* Sample of nearby Seyfert galaxies, for which
SINFONI &« MIDI observations are available

* hydrodynamical simulations combine large first results on
i NGC 1068
and small scale observations -

* MIDI Large Program 184.B-0832 and presenicetTe
SINFONI proposal for P86




6. 3D Hydrodynamical simulations with PLUTO

Torus build-up and BH feeding in NGC 1068 log (density) (g/cm~3]

e start after violent SN |l phase, following
short-duration star-burst, which built up
central star cluster

e then AGB stars with slow winds main mass
contributors:

« discrete mass input
* velocity (rotation plus
random) from emitting star
* mass loss rate
Jungwiert et al. 2001).:

5.55- 102
t+5.04- 105 yr

= 9-10-10 Msun yr_l IVlsun_1

iQ0.00

F 1 —21.00
- 1—22.00

- 1—-23.00

1—24.00

M(t)n =

—25.00

—-26.00
« effective cooling curve

e solved with PLUTO -code
(Mignone etal. 2007) Schartmann et al. 2009 &« 2010



6. 3D Hydrodynamical simulations with PLUTO

nuclear disc e disc extent: 0.5 to 1pc

) . *maserdiscin NGC 1068: 0.65 to
ma 1.1pc (Greenhill « Gwinn 1997)

. og(rho |

> |g/cm 3 l
il N

angular momentum
» distribution of gas coming into
centre seems to be reasonable

However: «outer torus component in
equilibrium (<2.5pc), but mass
pile up in nuclear disc

e accretion & star formation

al physics not included

foc] - very computationally extensive,

only short time evolution

possible

E— idea: 1D effective disc model for nuclear disc



7. 1D effective disc simulations: the model
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* mass infall onto the disc
from 3D hydro models

 time dependence from
Jungwiert et al. 2001

e use angular momentum
of mass inflow to derive
radial position in a
Keplerian disc

calculate viscous evolution with mass input source term and SF sink term:
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2input (t’ R) 4% 2SF (t’ R)

Lin & Pringle, 1987

compare resulting disc properties (mass, size, ...) to observations



7. 1D effective disc simulations: disc mass

nuclear disc mass in alpha parameter study

, x10° |
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observations of fully ionised =—————_
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* Models reproducing
maser observations: ~10% My, in clumpy disc model (Kumar 1999)

e observations of the CND in the Galactic centre: 1.3-10° M.,
in molecular mass (Montero-Castano et al. 2009)



7. 1D effective disc simulations: disc structure

surface density of the disc

— l pc
= alpha = 0.05] . | 4 mas {
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Radius R [pc] NGC 1068 Raban et al. 2009

HWHM=0.85 pc dust disc 0.7 pc HWHM of hot component

common radial structure from
MIDI observations (blue dashed
lines, Kishimoto et al. 2009)



7l

Mdot*°° [Msun/yr]

D effective disc simulations: current mass accretion rate
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Pier et al. 1994

assuming 100% reaches the BH: « accretion from nuclear disc might
Lpoi = 1.8:10%% erg/s be clumpy as e.g. observed in

(in Schartmann et al. 2005, » Galactic Centre (Montero-Castano
Lpoi =2.1-1044 erg/s gives a good et al. 2009)

adaptation to highres. data) « additional inflow?/outflow (scales)?



8. Outlook: effects of continuum radiation pressure

e accretion flow triggers central activity
 investigate radiation feedback on the gas inflow
e inner torus not modelled =P assume obscuration profile
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9. Conclusions

* observations (e.g. MIDI, SINFOND directly show geometrically thick gas
and dust structures in Seyfert cores

* dust radiative transfer models give us good idea of parameter
dependencies, effect of clumpiness, shape of dust distribution,
simultaneous agreement with highres SEDs & MIDI

* investigations of effects of evolving nuclear star cluster with
hydrodynamical models yield two-component structure

* feed mass inflow into 1D disc simulations, in order to check obscuration
and feeding properties on small scale as well as dynamics

* good agreement with observation

* evolving nuclear star cluster important mechanism for feeding nuclear
discs and nuclear activity



