
KiDS Survey Status

Jelte de Jong, Leiden Observatory

KiDS Survey Status

- Survey overview
- Observational planning
- Data in hand
- Data processing
- VST calibration plan

- deep survey: 1500 sq.deg. in u, g, r, i
- two fields: KiDS-S (-35°< δ <-25°) and KiDS-N (-5°< δ <+5°)
- overlapping with VIKING
- shallow photometric pass for phot. cal.
- repeat pass in g, providing 2-year baseline

Fields chosen such that:

- observations can be done year-round
- 2dF and SDSS (KiDS-N) spectroscopy available for several 100,000 galaxies

Observing conditions and exposure times such that:

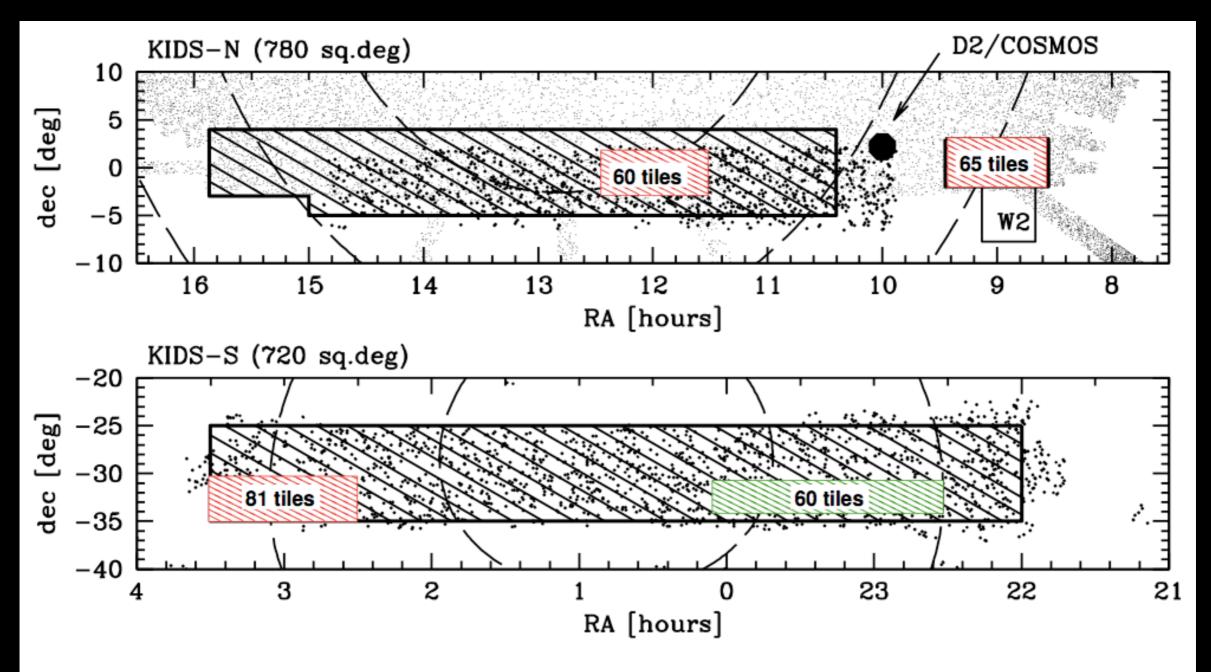
- balanced over astro-climate conditions
- median galaxy redshift ~0.8
- best seeing for r-band, the weak lensing band

Filter	Exp. time	Median seeing	Moon	I0σAB limit
u	1000 s	1.0"	Dark	24.8
g	900 s	0.8"	Dark	25.4
r	1800 s	0.6"	Dark	25.2
i	1200 s	0.7" (broad)	Bright	24.2

- Survey 'tiles' follow the Astro-WISE platesystem
- I OB per filter; per tile I group container
- OBs set-up as follows:

Filter	Exp. time	Dither	Seeing	Airmass	Moon
u	4x250 s	diag	< . "	<1.2	FLI<0.4; dist>90°
g	5x180 s	diag	<0.9"	<1.6	FLI<0.4; dist>90°
r	5x360 s	diag	<0.7"	<1.2	FLI<0.4; dist>90°
i	5x240 s	diag	< . "	<2.0	any FLI; dist>60°

Observational planning


Goal I: provide full 9-band photometry a.s.a.p.:

- Highest priority to areas already covered by VIKING
- Grouping of OB's per tile: first observe tiles that have been partially observed already

Goal 2: complete survey (excl. repeat) in 3 years:

- Aim for 250 sq.degrees per semester
- Ask time for 400 sq.degrees per semester

Observational planning

KiDS observing plan for P88

Time awarded: 420 hours

Tiles submitted: 210 (exec. time 419.7 hr)

Not completed EST OBs are also carried over to P88

Targeted areas coincide with existing VIKING data. Distribution over RA guarantees observable tiles during complete semester.

Data in hand

Early Science Time (Sept - 15 Oct):

- 240 OBs (60 tiles) submitted
- 45 OBs "completed" and ingested into Astro-WISE: 8 u, 8 g, 29 i, 0(!) r
- 23 OK; I6 NOK (II due to dead CCD);
 6 TBD

Also handful of OBs pre-EST and 73 OBs P88

KiDS data processed with Astro-WISE

Astro-WISE:

- was designed for VST data
- data-centric survey handling system, based on a fixed data model, in which all data objects are instantiations of a data class
- uses a federated database, allowing people at different locations to work together on data processing and quality control
- stores data lineage of all objects

Jobs for awjdejong

Target Processor

Contact

Willem-Jan Vriend

DB User awjdejong

Help Getting Started

Project

KIDS

Instrument

OMEGACAM 💠

State

- 1. Preselect Target
- 2. Specify Target
- 3. Select Target(s)
- 4. Process or Query

Options

Preferences

Process Parameters *

Upload Code

Job overview

DPU	ID	Acti	ons	User	Status	Submitted	Details
dpu.hpc.rug.astro-wise.org	9130	view	stop	awjdejong	SENDDATA	Fri Dec 2 14:58:09 2011	Q/R/F/E/A/S/U 98/0/0/0/0/0/0

Refresh

Cancel

Browse previous processing logs of awjdejong

page generated 2011-12-02 14:58:14.129548 generation time 0:00:08.777072 For optimal experience use firefox browser

empowered by

Quality of RAWSCIENCEFRAME:

OMEGACAM.2011-09-06T08:19:11.265_30.fits

AstroWISE DBView CaITS Process

see 2 previous comments

DBname: awidejong project: KIDS

Processing Details

creation_date	2011-09-06 15:46:13
is_valid	1
quality_flags	0
Privileges	3

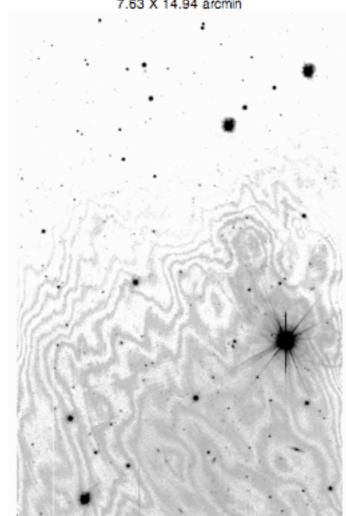
Image Statistics Details

mean	+8.970e+02		
median	+8.670e+02		
stdev	+1.276e+03		
min	+2.580e+02		
max	+6.554e+04		

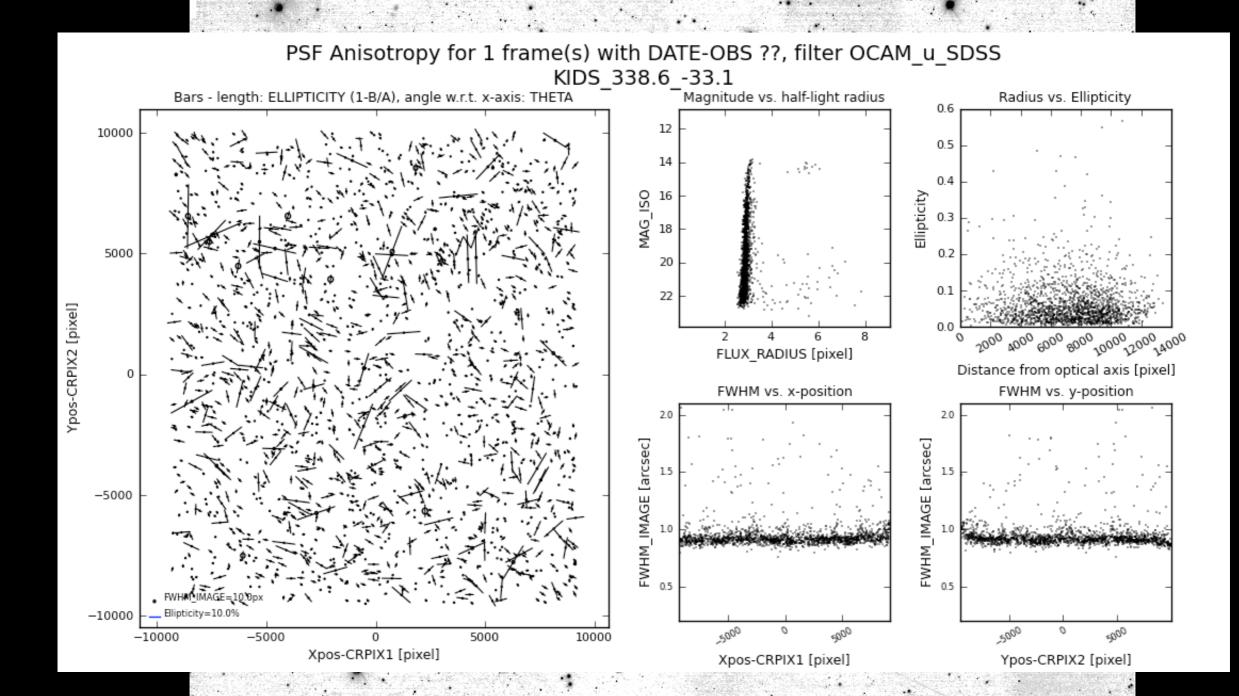
Photometry Details

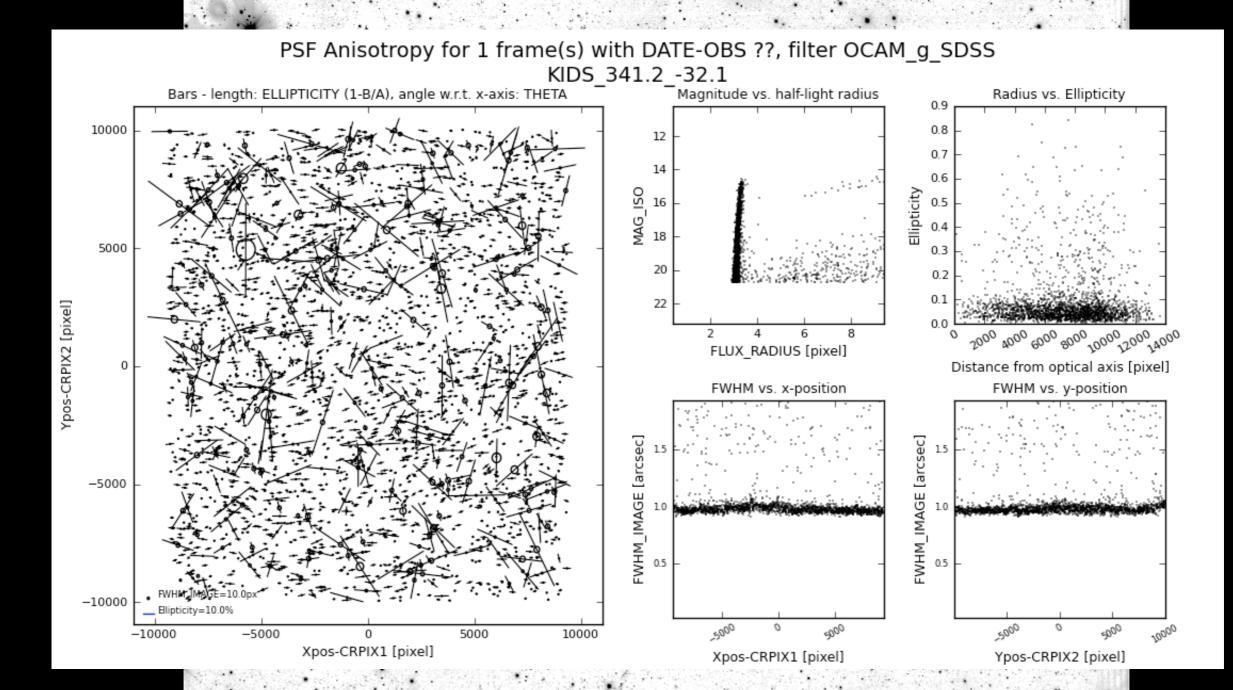
creation_date	2011-10-27 11:29:26		
is_valid	1		
quality_flags	0		
zeropoint	24.147 0.106		
zp_error			
zp_origin	derived		
num_sources	31		
extinction	0.046		
ext_error	0.003		

Observational Details


DATE_OBS	DATE_OBS 2011-09-06 08:19:11		UNKNOWN	
MJD_OBS	55810.3466582	EXPTIME	240.0	
OBJECT	KIDS_338.633.1	AIRMSTRT	1.662	
R.A.	22:34:25.3322	AIRMEND	1.696	
Dec.	-33:09:39.6360	Filter	OCAM_i_SDSS	
		mag_id	SloanI	

Chip ESO_CCD_#94 of Instrument OMEGACAM




RawScienceFrame

2144 X 4200 pixel 7.63 X 14.94 arcmin

- Per chip calibration
- Master flat = dome (small scale) + twilight (large scale)
- Illumination correction tied to a master flat
- Background subtraction upon coadding

PSF Anisotropy for 1 frame(s) with DATE-OBS ??, filter OCAM_r_SDSS KIDS_355.3_-31.2 Magnitude vs. half-light radius Bars - length: ELLIPTICITY (1-B/A), angle w.r.t. x-axis: THETA Radius vs. Ellipticity 0.9 10000 0.8 12 0.7 14 MAG_ISO Ellipticity 16 5000 0.3 20 0.2 0.1 Ypos-CRPIX2 [pixel] 22 1 2 3 4 5 6 7 FLUX_RADIUS [pixel] Distance from optical axis [pixel] FWHM vs. y-position FWHM vs. x-position FWHM_IMAGE [arcsec] FWHM_IMAGE [arcsec] -5000 -10000

10000

Xpos-CRPIX1 [pixel]

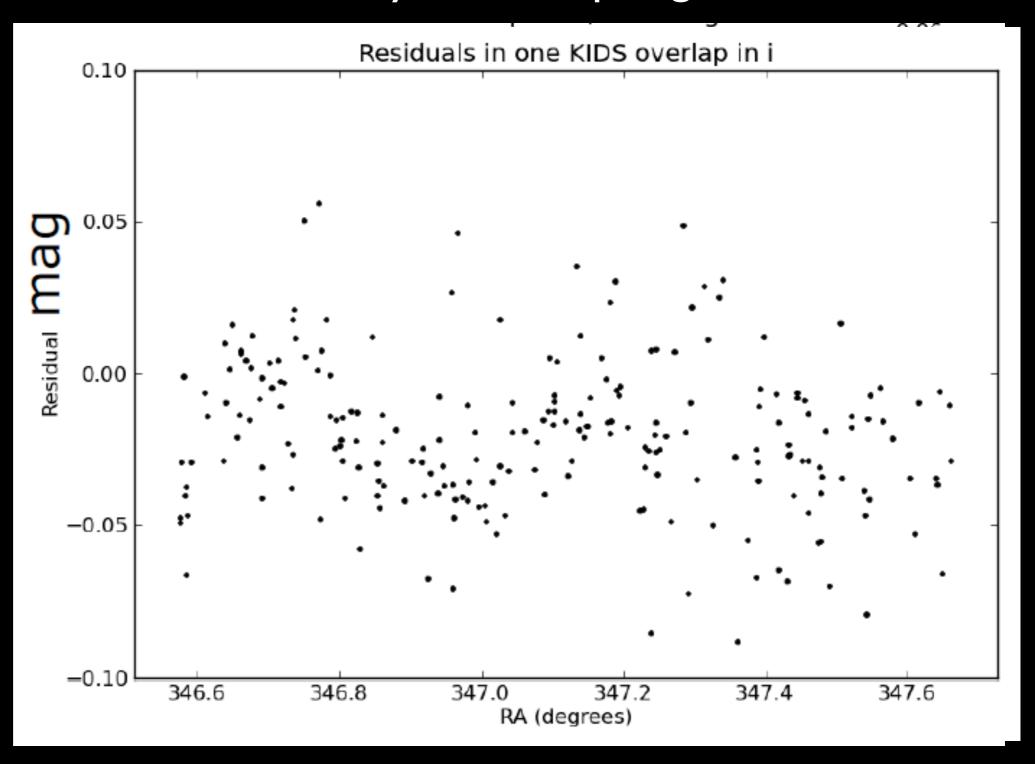
Ypos-CRPIX2 [pixel]

5000

-10000

-5000

Xpos-CRPIX1 [pixel]


PSF Anisotropy for 1 frame(s) with DATE-OBS ??, filter OCAM_i_SDSS KIDS_347.1_-32.1
ETA Magnitude vs. half-light radius Bars - length: ELLIPTICITY (1-B/A), angle w.r.t. x-axis: THETA Radius vs. Ellipticity 10 10000 8.0 0.7 12 0.6 14 MAG_ISO Ellipticity 16 5000 0.3 18 0.2 20 0.1 Ypos-CRPIX2 [pixel] 0.0 1 2 3 4 5 6 FLUX_RADIUS [pixel] Distance from optical axis [pixel] FWHM vs. x-position FWHM vs. y-position 2.0 FWHM_IMAGE [arcsec] FWHM_IMAGE [arcsec] -5000 -10000 -5000 -10000 5000 10000 Xpos-CRPIX1 [pixel] Xpos-CRPIX1 [pixel]

Photometric accuracy in overlap regions

I night (03 Oct 2011)

seeing: 0.6", 0.7", 0.8"

exptime = I200s

Photometry from dithers on SA fields ...work in progress...

Photom errors	u	g	r	i
stdev internal end-to-end	0.019	0.012	0.011	0.014
Stdev in <zpt> for mosaic</zpt>	0.011	0.010	0.012	0.011
Stdev in <zpt> per ccd</zpt>	0.037	0.010	0.016	~0.015
D(ZPT) / CCD	0.015	0.005	0.005	0.007

Internal photometry error for single source within dither 1-2% → good hope to get to 1% syst. uncertainty in relative photom.

Also good hope to get to 1.5% absolute photometry per band

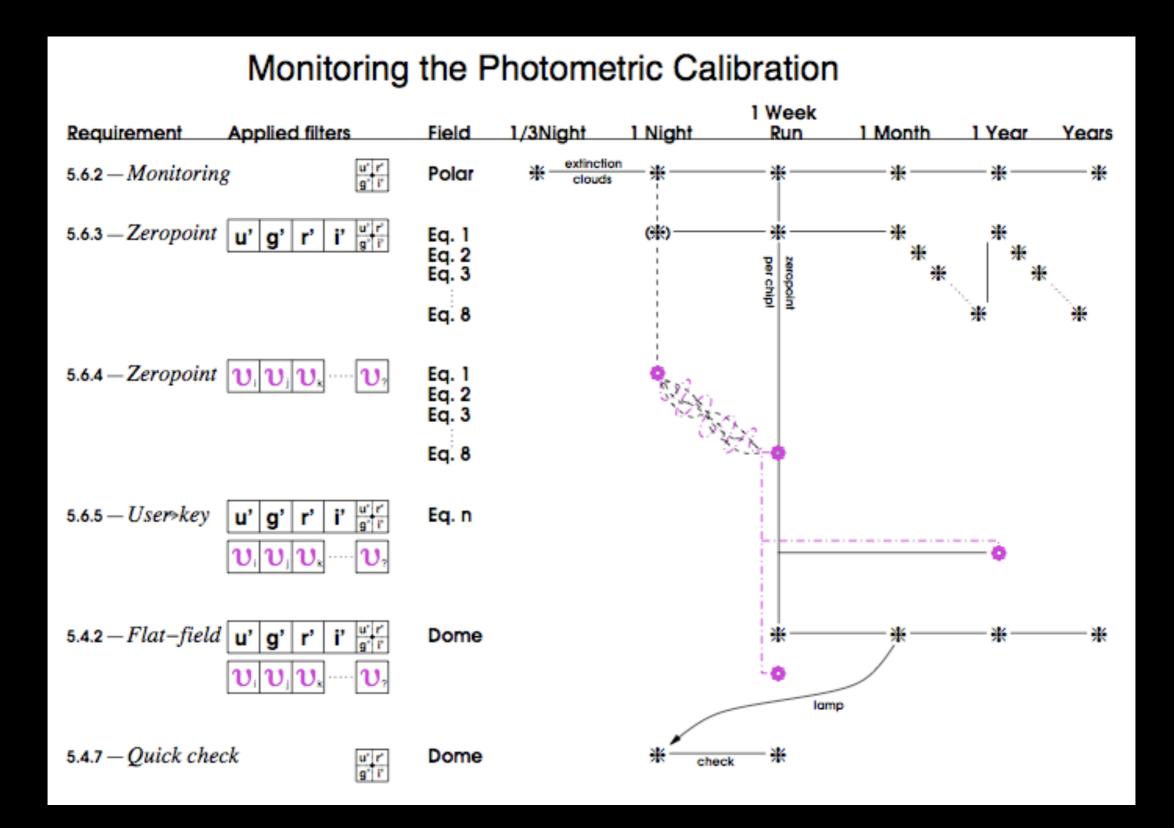
More work to be done on ZPT determination per CCD

VST calibration plan

Calibration data taken at specific intervals:

- biases daily
- dome flats once every three days
- darks once every week
- sky flats every clear night in 2-3 filters (key bands u, g, r, i once every three days)

Master flat fields are combination of dome flats (for small scale variations) and sky flats (for large scale variations)


VST calibration plan

Zeropoints derived based on:

- sky transparency and instrument efficiency measurement
 3 times per night, by monitoring polar standard field in composite u,g,r,i filter
- at evening twilight and midnight standard star field is observed with composite u,g,r,i filter + individual key filters
- If 'user band' is used, standard field also observed in this filter

Due to North pointing restrictions, southern secondary standard fields being defined

VST calibration plan

